parallel_executor.cc 67.5 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Q
Qiao Longfei 已提交
25
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/bind_threaded_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
29
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
30
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
31
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
33 34
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
35
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
36
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
37
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
38
#include "paddle/fluid/framework/variable_helper.h"
39
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
W
wangchaochaohu 已提交
40
#include "paddle/fluid/platform/event.h"
41
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
42

43
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
44 45 46
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

47 48
DECLARE_double(eager_delete_tensor_gb);

49 50 51 52
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
DECLARE_bool(sync_nccl_allreduce);
#endif

Y
Yu Yang 已提交
53
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
54
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
55
#endif
56 57 58 59 60 61 62
PADDLE_DEFINE_EXPORTED_string(
    pe_profile_fname, "",
    "Profiler filename for PE, which generated by gperftools."
    "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
PADDLE_DEFINE_EXPORTED_bool(
    enable_parallel_graph, false,
    "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
63

Y
Yang Yang 已提交
64
namespace paddle {
Y
Yu Yang 已提交
65 66
namespace framework {

Y
Yu Yang 已提交
67
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
68
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
69
static bool gProfileStarted = false;
Y
Yu Yang 已提交
70
#endif
71

72
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
73 74 75
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
76 77
class ParallelExecutorPrivate {
 public:
78 79 80
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
81
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
82 83
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
84
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
85 86 87
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
88
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
89 90 91 92
#endif
      });
    }
  }
Y
Yu Yang 已提交
93

94 95 96 97 98 99 100 101 102 103 104
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
105

106
  bool IsUseCUDA(DeviceType use_device);
107

108 109 110 111
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

112
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
113 114 115

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

Z
Zeng Jinle 已提交
116 117 118 119 120 121 122
  void ApplyFixOpRunOrderPass(ir::Graph *graph) {
    if (build_strategy_.fix_op_run_order_) {
      auto pass = ir::PassRegistry::Instance().Get("fix_op_run_order_pass");
      pass->Apply(graph);
    }
  }

123
  /**
T
tianshuo78520a 已提交
124 125
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
126 127 128 129 130 131
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
132
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
133 134
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
135
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
136 137 138 139
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
140 141 142 143 144
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
145 146 147 148 149 150
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

151
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
168 169
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
170 171 172 173 174 175 176 177 178 179 180 181
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
182
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
183 184
      } else {
        nccl_id = new ncclUniqueId();
185 186
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
187 188 189
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
190 191
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
192 193 194 195
      }

      flat_nccl_ids.push_back(nccl_id);

196 197
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
198 199 200 201 202 203
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
204 205
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
206 207 208 209 210 211
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
212 213 214
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
215 216 217 218
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

219 220
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
221 222

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
223 224 225 226
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
227 228 229
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
230 231 232
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
233 234 235 236 237

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
238 239 240
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
241 242 243
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
244

245 246 247 248
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
249 250
    }
  }
251

252
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
253 254 255
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
256 257 258
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
259 260 261 262 263 264
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

265
    if (bst->use_hierarchical_allreduce_) {
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
281 282 283 284 285

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

286 287
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
288
    InitNCCLCtxs(scope, *bst);
289
  }
290 291
#endif

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_, false,
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
            bkcl_get_unique_id(id.get()), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

    bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                             bst.trainer_id_);
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

376 377 378 379 380
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
381
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
382 383
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
384
  std::vector<Scope *> local_exec_scopes_;
385
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
386
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
387

388 389
  std::unordered_map<std::string, bool> is_persistable_;

390
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
391
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
392 393
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
394
#endif
C
chengduoZH 已提交
395
  bool own_local_scope_;
396
  DeviceType use_device_;
397
  bool use_all_reduce_;
398
  size_t nranks_;
S
sneaxiy 已提交
399

400
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
401
  ir::GarbageCollectorMap gcs_;
402 403

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
404 405
};

406 407
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
408 409
}

410 411 412 413 414 415 416 417 418 419
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

420
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
437
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
438 439 440 441
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

442 443 444 445 446 447 448 449
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

450 451 452 453
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
454
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
455 456 457 458 459
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

460 461 462 463 464
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
465
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
466 467 468
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
469 470
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
471 472
  }

473
  if (build_strategy_.memory_optimize_.get()) {
474 475 476 477 478 479
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
480
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
481
                                    new bool(use_device_ == p::kCUDA));
482 483 484
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
485 486 487
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
488
  }
489

490
  if (!is_gc_enabled) {
491 492 493 494
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
495 496 497 498 499
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
500
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
501
    if (platform::is_gpu_place(place)) {
502
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
503
      if (IsFastEagerDeletionModeEnabled()) {
504
        gc.reset(new UnsafeFastGPUGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
505
      } else {
506
        gc.reset(new StreamGarbageCollector(place, max_memory_size));
S
sneaxiy 已提交
507 508
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
509 510 511 512
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
F
fwenguang 已提交
513 514 515 516
#endif
    } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
      if (IsFastEagerDeletionModeEnabled()) {
517
        gc.reset(new MLUUnsafeFastGarbageCollector(place, max_memory_size));
F
fwenguang 已提交
518
      } else {
519
        gc.reset(new MLUStreamGarbageCollector(place, max_memory_size));
F
fwenguang 已提交
520 521 522 523 524 525
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use MLU device since it's not compiled with MLU,"
          "Please recompile or reinstall Paddle with MLU support."));
S
sneaxiy 已提交
526
#endif
527 528
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
529
      gc.reset(new XPUGarbageCollector(place, max_memory_size));
530 531 532 533 534
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
#endif
    } else if (platform::is_custom_place(place)) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(
            new CustomDeviceUnsafeFastGarbageCollector(place, max_memory_size));
      } else {
        gc.reset(new CustomStreamGarbageCollector(place, max_memory_size));
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use custom device since it's not compiled with "
          "CustomDevice,"
          "Please recompile or reinstall Paddle with CustomDevice support."));
S
sneaxiy 已提交
550
#endif
551
    } else if (platform::is_cpu_place(place)) {
552
      gc.reset(new CPUGarbageCollector(place, max_memory_size));
553 554 555 556 557
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
558
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
559 560
  }

S
sneaxiy 已提交
561
  if (!gcs_.empty()) {
S
sneaxiy 已提交
562 563
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
564 565
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
566 567
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
568
                                     &last_live_ops_of_vars);
569
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
570
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
571
    VLOG(10) << "EagerDeletionPass Applied";
572 573 574
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
575 576 577 578
  }
  return graph;
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

594 595
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

596 597 598 599
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

614
void InitP2P(const std::vector<platform::Place> &places) {
615
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
616 617 618 619 620 621
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
622
      if (!platform::is_gpu_place(places[i])) return;
623

624
      platform::CUDAPlace device = places[i];
625 626 627 628 629 630 631
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
632 633 634 635 636
#ifdef PADDLE_WITH_HIP
        hipError_t ret =
            hipDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != hipSuccess || can_acess != 1) {
#else
637 638 639
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
640
#endif
641 642 643 644
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
645 646 647
#ifdef PADDLE_WITH_HIP
          hipDeviceEnablePeerAccess(devices[j], 0);
#else
648
          cudaDeviceEnablePeerAccess(devices[j], 0);
649
#endif
650 651 652 653 654 655 656 657
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
658 659 660 661 662 663 664 665
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
666
    : member_(new ParallelExecutorPrivate(places, scope)) {
667 668 669
  PADDLE_ENFORCE_EQ(places.size() > 0 && !platform::is_npu_place(places[0]),
                    true, platform::errors::Unavailable(
                              "NPU is not supported in ParallelExecutor."));
670
  InitP2P(places);
671 672
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
673 674 675
  // Initialize necessary info of member_ with strategy.
  InitExecutorPrivateMemberInfo(exec_strategy, build_strategy, places.size(),
                                *graph);
Y
Yancey1989 已提交
676

677 678 679 680
  // Step 1. Create local scopes and Clone graph into multi device
  CreateLocalScopes(scope, local_scopes, /*create_new*/ true);
  std::vector<ir::Graph *> graphs = CloneGraphToMultiDevices(graph);
  PrepareNCCLCommunicator(scope);
681

Y
Yan Xu 已提交
682 683
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
684
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
685 686 687 688 689 690 691 692 693 694
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
  if (need_broadcast()) {
C
chengduo 已提交
695
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
696
  }
697

Q
Qiao Longfei 已提交
698 699
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
700 701
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, loss_var_name);
702
  PrepareForCUDAGraphCapture(graph);
703
  graph = member_->ApplyMemoryOptimizePass(graph);
Q
Qiao Longfei 已提交
704 705
  async_graphs[0] = graph;

706 707
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
708
  std::vector<details::VariableInfo> var_infos;
709 710 711
  CreateVariableInfos(&var_infos, graph);
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new*/ true);
712

713 714 715
  // Step 4. Create SSAGraph executor
  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);
716

717 718 719 720 721
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
  if (!member_->build_strategy_.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
722 723
  }

724 725 726
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
  SetReaderOpDeviceInfoOfGraphs(final_graphs);
}
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
ParallelExecutor::ParallelExecutor(const platform::Place &place, Scope *scope,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
    : member_(new ParallelExecutorPrivate({place}, scope)) {
  // Initialize necessary info of member_ with strategy.
  InitExecutorPrivateMemberInfo(exec_strategy, build_strategy,
                                /*device_count=*/1, *graph);

  CreateLocalScopes(scope, /*local_scope=*/{scope}, /*create_new=*/false);

  // Apply BuildStrategy to compile graph.
  std::vector<ir::Graph *> graphs = {graph};
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, /*loss_var_name=*/"");

  graph = member_->ApplyMemoryOptimizePass(graph);

  // Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  CreateVariableInfos(&var_infos_, graph);

  // Create local execution scopes
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new=*/false);

  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);

  // Set scope_map of op from each graph
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
}

void ParallelExecutor::PrepareVariables(Scope *scope) {
  for (auto &info : var_infos_) {
    auto var = scope->FindVar(info.name_);
    if (var != nullptr) {
      VLOG(2) << info.name_
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(info.name_), info.type_);
  }
}

773 774 775 776 777 778 779 780 781
void ParallelExecutor::BCastParamsToDevices(
    const std::vector<std::string> &vars, int trainer_id) const {
  VLOG(3) << "BCastParamsToDevices";
  // the initializing bcast, all vars would be bcast from device(0).
  for (auto &var : vars) {
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
      continue;
    }
782

783 784 785 786 787 788 789 790 791 792 793
    auto &main_tensor = main_var->Get<LoDTensor>();
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
794 795
      ncclDataType_t data_type = platform::ToNCCLDataType(
          framework::TransToProtoVarType(main_tensor.dtype()));
796 797 798
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
799

800
        if (i == 0 && trainer_id == 0) {
801
          buffer = const_cast<void *>(main_tensor.data());
802 803 804 805
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
806
          buffer = t->mutable_data(place, main_tensor.dtype());
807 808 809
        }
        buffers.push_back(buffer);
      }
810

811
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
812 813 814 815
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
816
      {
817
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
818 819
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
820
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
821 822
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
823
        }
824
        nccl_ctxs->WaitAll();
825
      }
826 827 828 829 830 831
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
832 833 834 835 836
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
837
      BKCLDataType data_type = BKCL_FLOAT;
838 839
      // BKCLDataType data_type =
      // platform::ToBKCLDataType(framework::TransToProtoVarType(main_tensor.dtype()));
840 841 842 843 844
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
845
          buffer = const_cast<void *>(main_tensor.data());
846 847 848 849
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
850
          buffer = t->mutable_data(place, main_tensor.dtype());
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        }
        buffers.push_back(buffer);
      }

      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
            bkcl_group_start(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
868
          auto broadcast_numel = numel;
869 870
          if (framework::TransToProtoVarType(main_tensor.dtype()) ==
              framework::proto::VarType::INT64) {
871
            broadcast_numel *= 2;
872 873
          }
          PADDLE_ENFORCE_EQ(
874 875
              bkcl_broadcast(bkcl_ctx.comm(), buffers[i], buffers[i],
                             broadcast_numel, data_type, 0, NULL),
876 877 878 879 880 881 882 883 884 885
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
            bkcl_group_end(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
886
#endif
887 888
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
889
      for (size_t i = 1; i < member_->places_.size(); ++i) {
890 891
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
892

Q
Qiao Longfei 已提交
893
        auto copy_memory = [&] {
894
          t->Resize(dims);
895
          t->mutable_data(cpu, main_tensor.dtype());
896
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
897 898
        };

Q
Qiao Longfei 已提交
899
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
900 901 902 903

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
904 905
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
906 907
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
908
        } else {
Q
can run  
Qiao Longfei 已提交
909
          share_memory();
910
        }
Y
Yu Yang 已提交
911
      }
Y
Stash  
Yu Yang 已提交
912 913
    }
  }
Y
Yu Yang 已提交
914
}
Y
Yu Yang 已提交
915

Z
Zhen Wang 已提交
916 917
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
918
  VLOG(3) << "enter ParallelExecutor Run";
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
#ifdef PADDLE_WITH_CUDA
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(fetch_tensors.empty(), true,
                      platform::errors::InvalidArgument(
                          "Cannot fetch data when using CUDA Graph."));
    PADDLE_ENFORCE_EQ(
        member_->build_strategy_.allow_cuda_graph_capture_, true,
        platform::errors::InvalidArgument(
            "You must turn on build_strategy.allow_cuda_graph_capture = True "
            "to enable CUDA Graph capturing."));
    PADDLE_ENFORCE_EQ(
        member_->places_[0], platform::CUDAGraphCapturingPlace(),
        platform::errors::InvalidArgument("The place to capture CUDAGraph is "
                                          "not the same as the place to run."));
  }
#endif

Y
Yu Yang 已提交
936 937 938
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
939 940
  }
#endif
Y
Yu Yang 已提交
941

X
Xin Pan 已提交
942
  platform::RecordBlock b(0);
943

944 945
  ResetHasFeedGuard reset_has_feed_guard(member_);

946 947
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
948 949

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
950
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
951
  return fetch_data;
Y
Yu Yang 已提交
952
}
Y
Yu Yang 已提交
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
void ParallelExecutor::RunWithoutFetch(
    const std::vector<std::string> &skip_eager_vars) {
  VLOG(3) << "enter ParallelExecutor RunWithoutFetch";
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
  }
#endif
  platform::RecordBlock b(0);

  ResetHasFeedGuard reset_has_feed_guard(member_);

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), skip_eager_vars,
                                member_->HasGarbageCollectors());

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
  member_->executor_->Run(/*fetch_tensors*/ {}, /*return_merged*/ false);
}

void ParallelExecutor::SkipMemoryReuse(
    size_t scope_idx, const std::vector<std::string> &skip_vars) {
  for (auto &var_name : skip_vars) {
    bool is_persistable = member_->IsPersistable(var_name);
    if (!is_persistable) {
      VLOG(3) << "SkipMemoryReuse for var: " << var_name;
      member_->SetSkipMemoryReuse(scope_idx, var_name);
    }
  }
}

Y
Yu Yang 已提交
984 985
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
986 987 988 989 990 991 992 993 994 995
  if (platform::IsCUDAGraphCapturing()) {
    for (auto &tensor : tensors) {
      PADDLE_ENFORCE_EQ(
          tensor.empty(), true,
          platform::errors::PermissionDenied(
              "Feeding data is not permitted when capturing CUDA Graph."));
    }
    return;
  }

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
1011

1012
  size_t feed_num = 0;
Y
Yu Yang 已提交
1013 1014
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
1015 1016 1017 1018 1019 1020
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
1021
    for (auto &pair : map) {
1022
      bool is_persistable = member_->IsPersistable(pair.first);
1023 1024 1025
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
1026 1027 1028 1029 1030
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
1031 1032 1033 1034
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
1047 1048 1049 1050
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
1051 1052 1053 1054 1055 1056 1057 1058
  if (platform::IsCUDAGraphCapturing()) {
    PADDLE_ENFORCE_EQ(
        tensors.empty(), true,
        platform::errors::PermissionDenied(
            "Feeding data is not permitted when capturing CUDA Graph."));
    return;
  }

1059
  size_t num_places = member_->places_.size();
1060 1061 1062 1063 1064
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1065
  for (auto &pair : tensors) {
1066 1067 1068 1069
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
1070
    auto lod_tensors = SplitLoDTensor(pair.second, member_->places_);
1071
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1072 1073
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1074
      auto error_info = string::Sprintf(
1075 1076 1077
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
1078 1079 1080 1081 1082 1083
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1084
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1085 1086 1087 1088
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1089 1090 1091 1092 1093 1094
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
1095 1096 1097 1098 1099 1100
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1101
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1102 1103 1104 1105 1106 1107 1108 1109 1110
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
1111
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1112
      }
C
chengduo 已提交
1113
    }
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1140 1141 1142 1143 1144
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1145 1146
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1147 1148
    }
  }
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1165 1166
}

X
Xin Pan 已提交
1167 1168 1169 1170 1171 1172 1173
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1174
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1175
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1176
    const BuildStrategy &build_strategy) const {
1177 1178 1179
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1180

Y
Yancey1989 已提交
1181
  bool enable_parallel_graph = true;
1182

X
Xin Pan 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1196 1197 1198
    }
  }

1199
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1200
    if (build_strategy.enable_sequential_execution_ ||
1201
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1202
      enable_parallel_graph = false;
1203 1204 1205 1206 1207 1208 1209 1210 1211
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1212
  return enable_parallel_graph;
1213 1214
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
void ParallelExecutor::InitExecutorPrivateMemberInfo(
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
    size_t device_count, const ir::Graph &graph) {
  member_->use_device_ = exec_strategy.use_device_;
  member_->build_strategy_ = build_strategy;
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
  member_->nranks_ = build_strategy.num_trainers_ * device_count;
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && defined(_WIN32)
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        device_count, 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
  }
#endif

#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    (!defined(PADDLE_WITH_NCCL) && !defined(PADDLE_WITH_RCCL))
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        device_count, 1,
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
#endif

  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
  } else {
    device_name = "XPU";
  }

  VLOG(1) << string::Sprintf(
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      device_name, device_count, device_count);

  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
}

void ParallelExecutor::CreateLocalScopes(
    Scope *global_scope, const std::vector<Scope *> &local_scopes,
    bool create_new) {
  if (local_scopes.empty()) {
    member_->own_local_scope_ = true;
    member_->local_scopes_.emplace_back(global_scope);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      member_->local_scopes_.emplace_back(&global_scope->NewScope());
    }
  } else {
    member_->own_local_scope_ = false;
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      if (create_new) {
        member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
      } else {
        // Use local scopes directly
        member_->local_scopes_.emplace_back(local_scopes[i]);
      }
    }
  }
}

std::unordered_map<Scope *, Scope *> ParallelExecutor::CreateLocalExecScopes(
    const std::vector<Scope *> &local_scopes, bool create_new) {
  std::unordered_map<Scope *, Scope *> scope_map;

  for (auto *scope : local_scopes) {
    Scope *local_exec_scope = scope;
    if (create_new) {
      local_exec_scope = &scope->NewScope();
    }
    member_->local_exec_scopes_.emplace_back(local_exec_scope);
    scope_map.emplace(scope, local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));

  return scope_map;
}

std::vector<ir::Graph *> ParallelExecutor::CloneGraphToMultiDevices(
    ir::Graph *graph) {
  std::vector<ir::Graph *> graphs;
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_), false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
    graphs.push_back(graph);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
  }

  return graphs;
}

void ParallelExecutor::PrepareNCCLCommunicator(Scope *global_scope) {
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    member_->InitOrGetNCCLCommunicator(global_scope, &member_->build_strategy_);

    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    auto *nccl_ctxs = member_->nccl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(global_scope, member_->build_strategy_);

    auto *bkcl_ctxs = member_->bkcl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
W
Wilber 已提交
1383
      dev_ctx->SetBkclContext(bkcl_ctx.comm());
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
#endif
  }
}

std::vector<ir::Graph *> ParallelExecutor::CompileGraphWithBuildStrategy(
    ir::Graph *graph, std::vector<ir::Graph *> *device_graphs,
    const std::string &loss_var_name) {
  auto device_count = member_->places_.size();
  std::vector<ir::Graph *> async_graphs(device_count);

  auto &graphs = *device_graphs;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(graphs.size(), device_count,
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
                          device_count, graphs.size()));
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->nccl_ctxs_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->nccl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->nccl_ctxs_);
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(graphs.size(), device_count,
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
                          device_count, graphs.size()));
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->bkcl_ctxs_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->bkcl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->bkcl_ctxs_);
  }
#else
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_);
  }
#endif

  return async_graphs;
}

void ParallelExecutor::CreateVariableInfos(
    std::vector<details::VariableInfo> *var_infos, ir::Graph *graph) {
  PADDLE_ENFORCE_EQ(
      var_infos->size(), 0,
      platform::errors::PreconditionNotMet(
          "var_infos->size() shoule be 0, but received %d", var_infos->size()));
  PADDLE_ENFORCE_EQ(
      member_->is_persistable_.size(), 0,
      platform::errors::PreconditionNotMet(
          "member_->is_persistable_.size() shoule be 0, but received %d",
          member_->is_persistable_.size()));
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos->emplace_back();
      var_infos->back().name_ = node->Var()->Name();
      var_infos->back().type_ = node->Var()->GetType();
      var_infos->back().persistable_ = node->Var()->Persistable();

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
    }
  }

  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos->emplace_back();
      var_infos->back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }
}

std::vector<ir::Graph *> ParallelExecutor::CreateSSAGraphExecutor(
    const ExecutionStrategy &exec_strategy,
    std::vector<ir::Graph *> *async_graphs, ir::Graph *graph) {
  std::vector<ir::Graph *> final_graphs;

  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, *async_graphs));
    final_graphs = *async_graphs;
  } else if (member_->build_strategy_.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
#endif
  } else {
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
Z
Zeng Jinle 已提交
1543 1544 1545 1546
      for (auto &g : possible_inference_graphs) {
        member_->ApplyFixOpRunOrderPass(g.get());
      }

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
    } else {
Z
Zeng Jinle 已提交
1559 1560 1561
      if (member_->places_.size() == 1) {
        member_->ApplyFixOpRunOrderPass(graph);
      }
1562 1563 1564 1565 1566 1567 1568 1569 1570
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        if (member_->use_device_ == p::kXPU) {
#if defined(PADDLE_WITH_XPU)
          VLOG(3) << "use BindThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::BindThreadedSSAGraphExecutor(
              exec_strategy, member_->local_scopes_,
              member_->local_exec_scopes_, member_->places_, graph));
#else
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Paddle can't use XPU device since it's not compiled with XPU,"
              "Please recompile or reinstall Paddle with XPU support."));
#endif
        } else {
          VLOG(3) << "use FastThreadedSSAGraphExecutor";
          member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
              exec_strategy, member_->local_scopes_,
              member_->local_exec_scopes_, member_->places_, graph));
        }
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
      }
      final_graphs.emplace_back(graph);
    }
  }
  return final_graphs;
}

void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::vector<ir::Graph *> &final_graphs,
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  PADDLE_ENFORCE_GE(
      final_graphs.size(), 1,
      platform::errors::PreconditionNotMet(
          "final_graphs shoule contain at least one graph, but received %d",
          final_graphs.size()));

  PADDLE_ENFORCE_GT(scope_map.size(), 0,
                    platform::errors::PreconditionNotMet(
                        "scope_map shoule contain at least one "
                        "element, but received %d",
                        scope_map.size()));
  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
1613
      op->SetIsVariantScope(true);
1614 1615 1616 1617
    }
  }
}

1618 1619 1620 1621 1622 1623 1624
void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  auto inner_graph = const_cast<ir::Graph *>(&Graph());
  std::vector<ir::Graph *> graphs = {inner_graph};
  ResetOpHandleScopeMapOfGraphs(graphs, scope_map);
}

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
void ParallelExecutor::SetReaderOpDeviceInfoOfGraphs(
    const std::vector<ir::Graph *> &final_graphs) {
  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
}

1636 1637 1638 1639
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
void ParallelExecutor::PrepareForCUDAGraphCapture(ir::Graph *graph) {
  const auto &build_strategy = member_->build_strategy_;
  if (!build_strategy.allow_cuda_graph_capture_) return;
#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_EQ(
      build_strategy.async_mode_, false,
      platform::errors::InvalidArgument(
          "Async Executor does not support CUDA Graph capturing."));
  PADDLE_ENFORCE_EQ(
      platform::IsCUDAGraphCapturing(), false,
      platform::errors::PermissionDenied("CUDA Graph is not allowed to capture "
                                         "when running the first batch."));
  PADDLE_ENFORCE_EQ(
      member_->places_.size(), 1,
      platform::errors::InvalidArgument(
          "CUDA Graph is only supported when one GPU device is running."));
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(member_->places_[0]), true,
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported on NVIDIA GPU device."));
  PADDLE_ENFORCE_EQ(FLAGS_sync_nccl_allreduce, false,
                    platform::errors::InvalidArgument(
                        "FLAGS_sync_nccl_allreduce must be False to support "
                        "CUDA Graph capturing."));

  std::unordered_map<std::string, std::vector<VarDesc *>> all_vars;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      auto *var_desc = node->Var();
      all_vars[var_desc->Name()].emplace_back(var_desc);
    }
  }

  auto mark_var_as_persistable = [&all_vars](const std::string &name) {
    auto iter = all_vars.find(name);
    if (iter != all_vars.end()) {
      for (auto *var_desc : iter->second) {
        var_desc->SetPersistable(true);
      }
    }
  };

  // Step 1: All fused vars must be persistable.
  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      fused_var.second.persistable_ = true;
      mark_var_as_persistable(fused_var.first);
    }
  }

  // Step 2: All pinned vars must be persistable.
  if (graph->Has(details::kPinnedVars)) {
    auto &pinned_vars = graph->Get<details::PinnedVars>(details::kPinnedVars);
    for (auto &pinned_var : pinned_vars) {
      mark_var_as_persistable(pinned_var);
    }
  }

  // Step 3: Move all main programs to startup programs to make sure that
  // the main programs would only be run once.
  if (graph->Has(details::kProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    auto &main_programs =
        graph->Get<details::ProgramDescs>(details::kProgramDescs);
    for (auto &main_program : main_programs) {
      startup_programs.emplace_back(main_program);
    }
    graph->Erase(details::kProgramDescs);
  }

  // Step 4: Mark all vars in startup programs to be persistable.
  if (graph->Has(details::kStartupProgramDescs)) {
    auto &startup_programs =
        graph->GetOrInit<details::ProgramDescs>(details::kStartupProgramDescs);
    for (auto &startup_program : startup_programs) {
      for (auto &op_desc : startup_program.Block(0).AllOps()) {
        for (auto &output : op_desc->OutputArgumentNames()) {
          mark_var_as_persistable(output);
        }
      }
    }
  }

  // Step 5: ScaleLossGrad must be run beforehand to avoid H2D copy.
  auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*graph);
  auto *scope = member_->local_scopes_[0];
  for (auto *op : ops) {
    auto *loss_grad_op = dynamic_cast<details::ScaleLossGradOpHandle *>(op);
    if (loss_grad_op == nullptr) continue;
    auto loss_grad_name = loss_grad_op->LossGradName();
    mark_var_as_persistable(loss_grad_name);
    loss_grad_op->RunOnVar(scope->Var(loss_grad_name));
    loss_grad_op->SetSkipRunning(true);
  }
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "CUDA Graph is only supported on NVIDIA GPU device."));
#endif
}

Y
Yu Yang 已提交
1741
}  // namespace framework
Y
Yang Yang 已提交
1742
}  // namespace paddle
S
sneaxiy 已提交
1743

S
sneaxiy 已提交
1744
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1745
USE_PASS(eager_deletion_pass);
1746
USE_PASS(buffer_shared_inplace_pass);
1747
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1748
USE_PASS(inplace_addto_op_pass);
Z
Zeng Jinle 已提交
1749
USE_PASS(fix_op_run_order_pass);