manipulation.py 159.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

Z
zhiboniu 已提交
18
from ..static import Variable, device_guard
19 20 21
from ..framework import core, in_dygraph_mode
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check, _non_static_mode
from ..framework import LayerHelper
Z
zhiboniu 已提交
22
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
W
Wilber 已提交
23
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
25
import numpy as np
26
# TODO: define functions to manipulate a tensor  
27
from ..fluid.layers.nn import _elementwise_op_in_dygraph
28
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
29
import paddle
W
wanghuancoder 已提交
30
from paddle import _C_ops
31 32 33 34 35
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
36

37 38
__all__ = []

W
Wilber 已提交
39

40 41 42 43 44 45 46 47
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
48
        x (Tensor): An input N-D Tensor with data type bool, float16,
49
            float32, float64, int32, int64, uint8.
50
        dtype (np.dtype|str): Data type of the output:
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
    ], 'cast')
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
    
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Tensor.
        TypeError: The type of ``ends`` must be list, tuple or Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
                    "Input axes should not be an empty list/tuple.")
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
                "Input axes must be a python list or tuple, but reveived {}".
                format(type(axes)))

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item
                for item in starts
            ]
            attrs += ('starts', starts)
        elif isinstance(starts, tmp_tensor_type):
            starts_tensor = starts
            starts.stop_gradient = True
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in ends
            ]
            attrs += ('ends', ends)
        elif isinstance(ends, tmp_tensor_type):
            ends_tensor = ends
            ends_tensor.stop_gradient = True
            infer_flags = list(-1 for i in range(len(axes)))
        return _C_ops.slice(input, starts_tensor, ends_tensor, None, None,
                            'axes', axes, 'infer_flags', infer_flags, *attrs)
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
                        "Input axes should not be an empty list/tuple.")
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
                    "Input axes must be a python list or tuple, but reveived {}".
                    format(type(axes)))

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            return _C_ops.slice(input, starts_tensor, ends_tensor, None, None,
                                'axes', axes, 'infer_flags', infer_flags,
                                *attrs)

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
        return _C_ops.final_state_transpose(x, perm)
    else:
        if _in_legacy_dygraph():
            out, _ = _C_ops.transpose2(x, 'axis', perm)
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'XShape': [x_shape]},
        attrs={'axis': perm})
    return out


def unstack(x, axis=0, num=None):
    """
    :alias_main: paddle.unstack
	:alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack
	:old_api: paddle.fluid.layers.unstack

    **UnStack Layer**

    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
        return _C_ops.unstack(x, num, 'axis', int(axis), 'num', num)

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
   
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_shard_index(input, index_num, nshards,
                                              shard_id, ignore_value)

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
604
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python
          :name: code-example1

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
    helper = LayerHelper('crop_tensor', **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


735 736 737 738 739 740 741 742 743
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
744 745
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
            "The type of 'value'  must be int or float, but received %s." %
            (type(value)))
765 766
    return _C_ops.fill_any_(x, "value_float",
                            float(value), "value_int", int(value))
767 768 769 770 771 772 773 774 775 776 777


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
778
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
779 780

    Returns:
781
        x (Tensor): Tensor x filled with zero inplace
782 783 784 785 786 787 788 789 790 791 792 793

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
794
    return _C_ops.fill_any_(x, "value_float", 0., "value_int", int(0))
795 796


797 798 799
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
800 801 802
    Note:
        This API is ONLY available in Dygraph mode.
	
803
    This function fill the value into the x Tensor's diagonal inplace.
804
    
805 806 807 808 809 810
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
811
    
812 813
    Returns:
        Tensor: Tensor with diagonal filled with value.
814

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_diagonal_')
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
    assert len(inshape) >= 2, ('Tensor dims should >= 2 in fill_diagonal_ API')
    if len(inshape) > 2:
        assert len(inshapeset) == 1, (
            'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
        )
    if len(inshape) == 2:
839 840 841 842
        return _C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                     'wrap', wrap)
    return _C_ops.fill_diagonal_(x, 'value', value, 'offset', offset, 'wrap',
                                 True)
843 844


845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
    assert dim1 < len(inshape) and dim1 >= -len(inshape), (
        'dim1 should between [-rank,rank) in fill_diagonal_tensor_')
    assert dim2 < len(inshape) and dim2 >= -len(inshape), (
        'dim2 should between [-rank,rank) in fill_diagonal_tensor_')
    assert len(inshape) >= 2, (
        'Tensor dims should >= 2 in fill_diagonal_tensor_')
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset))
    predshape.append(diaglen)
    assert tuple(predshape) == tuple(y.shape), (
        "the y shape should be {}".format(predshape))
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
870 871 872 873
        return _C_ops.fill_diagonal_tensor_(x, y, 'dim1', dim1, 'dim2', dim2,
                                            'offset', offset)
    return _C_ops.fill_diagonal_tensor(x, y, 'dim1', dim1, 'dim2', dim2,
                                       'offset', offset)
874 875 876 877


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
878 879
    Note:
        This API is ONLY available in Dygraph mode.
880 881 882 883

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
884 885 886 887 888 889
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True)


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
914 915 916 917 918 919
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False)


Z
zhiboniu 已提交
939 940 941
@dygraph_only
def tolist(x):
    """
942 943
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
944 945 946 947

    This function translate the paddle.Tensor to python list.

    Args:
948
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


970 971 972 973 974 975
def concat(x, axis=0, name=None):
    """

    This OP concatenates the input along the axis.

    Args:
976
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
L
liuyuhui 已提交
977
            float32, float64, int32, int64, uint8. All the Tensors in ``x`` must have same data type.
978
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
979 980 981
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
982
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
983 984

    Returns:
985
        Tensor: A Tensor with the same data type as ``x``.
986 987 988 989 990 991

    Examples:
        .. code-block:: python
            
            import paddle
            
992 993 994 995 996 997
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
998 999 1000
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1001 1002 1003
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1004 1005 1006 1007 1008 1009 1010 1011 1012
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        return _C_ops.final_state_concat(input, axis)

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                "number of the elements must be 1, but received %s." % len(input)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
    return out
1081 1082


1083 1084 1085 1086 1087 1088 1089 1090
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
1091
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1092 1093
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1094
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
Z
zhiboniu 已提交
1111
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1112
        return _C_ops.broadcast_tensors(input, num_inputs)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
                invalid = (output_shape_r[i] != shape[i] and
                           output_shape_r[i] != 1 and shape[i] != 1)
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1151
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
            helper.create_variable_for_type_inference(dtype=helper.input_dtype(
            )))
        i += 1

    inputs = {'X': input}
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out},
        attrs={})

    return out


Y
yaoxuefeng 已提交
1176
def flip(x, axis, name=None):
W
Wilber 已提交
1177
    """
Y
yaoxuefeng 已提交
1178
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1179 1180

    Args:
Y
yaoxuefeng 已提交
1181
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1182
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1183
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1184
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1185 1186

    Returns:
Y
yaoxuefeng 已提交
1187
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1188 1189 1190 1191 1192 1193

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
1194 1195 1196 1197

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
1198
          img = paddle.to_tensor(x)
R
Roc 已提交
1199 1200
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1201

R
Roc 已提交
1202 1203
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1204
    """
R
Roc 已提交
1205 1206
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1207 1208 1209 1210

    if in_dygraph_mode():
        return _C_ops.final_state_flip(x, axis)

Z
zhiboniu 已提交
1211
    if paddle.in_dynamic_mode():
1212
        return _C_ops.flip(x, "axis", axis)
R
Roc 已提交
1213

W
Wilber 已提交
1214
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1215 1216
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
1217 1218 1219
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
1220
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1221 1222 1223 1224 1225 1226 1227
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
1228
        inputs={"X": x},
W
Wilber 已提交
1229
        outputs={"Out": out},
Y
yaoxuefeng 已提交
1230
        attrs={"axis": axis})
W
Wilber 已提交
1231
    return out
1232 1233


Z
zmxdream 已提交
1234 1235
def rot90(x, k=1, axes=[0, 1], name=None):
    """
Z
zmxdream 已提交
1236
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1237 1238 1239

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1240
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1241 1242
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
Z
zmxdream 已提交
1256 1257 1258 1259
          print(data) 
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1260
          y = paddle.rot90(data, 1, [0, 1])
Z
zmxdream 已提交
1261 1262 1263 1264
          print(y) 
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1265
          y= paddle.rot90(data, -1, [0, 1])
Z
zmxdream 已提交
1266 1267 1268 1269
          print(y) 
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1270 1271
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
Z
zmxdream 已提交
1272 1273 1274 1275 1276 1277
          print(data2) 
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1278
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1279 1280 1281 1282 1283
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'rot90')
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
        raise ValueError("expected total rotation axes == 2, but got axes = {}".
                         format(total_rot_dims))
    if input_total_dims < 2:
        raise ValueError("expected total dims >= 2, but got total dims = {}".
                         format(input_total_dims))

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".
            format(axes[0], axes[1]))

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
        raise ValueError("Rotation axis0 out of range, axis0 = {}".format(axes[
            0]))
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
        raise ValueError("Rotation axis1 out of range, axis1 = {}".format(axes[
            1]))

Z
zmxdream 已提交
1315
    k %= 4
Z
zmxdream 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1331
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1332
    r"""
1333 1334 1335 1336
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1337 1338 1339 1340
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, please 
    use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1370
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1371
                      float64, int8, int32, int64, uint8.
1372 1373 1374 1375 1376 1377
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
Y
yaoxuefeng 已提交
1378
        Tensor: A tensor with the contents of the input tensor, with input \
1379 1380 1381 1382
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
1383
        ValueError: If x is not a Tensor.
1384 1385 1386 1387 1388 1389 1390 1391 1392
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1393

Y
yaoxuefeng 已提交
1394 1395
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1396

1397 1398
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1399 1400 1401 1402

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1403 1404
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1405
        raise ValueError("The input x should be a Tensor")
1406

Z
zhiboniu 已提交
1407
    if not paddle.in_dynamic_mode():
1408
        check_variable_and_dtype(
1409 1410
            x, 'x',
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1411
            'flatten')
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1429 1430 1431 1432 1433
    if in_dygraph_mode():
        dy_out, _ = _C_ops.final_state_flatten(x, start_axis, stop_axis)
        return dy_out

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1434 1435
        dy_out, _ = _C_ops.flatten_contiguous_range(x, 'start_axis', start_axis,
                                                    'stop_axis', stop_axis)
1436 1437
        return dy_out

1438
    helper = LayerHelper('flatten', **locals())
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

W
wanghuancoder 已提交
1476 1477
    dy_out, _ = _C_ops.flatten_contiguous_range_(x, 'start_axis', start_axis,
                                                 'stop_axis', stop_axis)
1478 1479 1480
    return dy_out


Y
yaoxuefeng 已提交
1481
def roll(x, shifts, axis=None, name=None):
1482
    """
Y
yaoxuefeng 已提交
1483 1484 1485
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
1486 1487 1488
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1489
        x (Tensor): The x tensor as input.
1490
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1491 1492
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
1493 1494

    Returns:
Y
yaoxuefeng 已提交
1495
        Tensor: A Tensor with same data type as `x`.
1496 1497 1498

    Examples:
        .. code-block:: python
C
Chen Long 已提交
1499
            
1500 1501
            import paddle

1502 1503 1504
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1505
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1506
            print(out_z1)
Y
yaoxuefeng 已提交
1507 1508 1509 1510
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1511
            print(out_z2)
Y
yaoxuefeng 已提交
1512 1513 1514
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
1515
    """
Y
yaoxuefeng 已提交
1516
    origin_shape = x.shape
1517 1518
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1519 1520 1521 1522
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1523
    if axis is not None:
Y
yaoxuefeng 已提交
1524 1525 1526 1527 1528
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
1529 1530 1531
    else:
        axis = []

F
From00 已提交
1532
    if in_dygraph_mode():
1533 1534
        if isinstance(shifts, paddle.Tensor):
            shifts = shifts.cpu()
F
From00 已提交
1535 1536 1537
        return _C_ops.final_state_roll(x, shifts, axis)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1538
        return _C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1539

1540 1541
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1542

Y
yaoxuefeng 已提交
1543
    out = helper.create_variable_for_type_inference(x.dtype)
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    if isinstance(shifts, Variable):
        helper.append_op(
            type='roll',
            inputs={'X': x,
                    "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis})
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis,
                   'shifts': shifts})
1560
    return out
1561 1562


L
Leo Chen 已提交
1563
def stack(x, axis=0, name=None):
1564
    """
L
Leo Chen 已提交
1565 1566 1567 1568 1569 1570 1571
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1607
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1608 1609 1610 1611 1612 1613 1614 1615

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1616
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1617
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1618 1619 1620 1621 1622
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
1623
    Returns:
L
Leo Chen 已提交
1624
        Tensor: The stacked tensor with same data type as input.
1625 1626 1627

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
1628

1629
            import paddle
1630
            
L
Leo Chen 已提交
1631 1632 1633
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Liyulingyue 已提交
1634
	    
L
Leo Chen 已提交
1635 1636
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1637
            print(out)
L
Leo Chen 已提交
1638 1639 1640
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
L
Liyulingyue 已提交
1641 1642 1643 1644 1645 1646 1647
	    
	    out = paddle.stack([x1, x2, x3], axis=-2)
	    print(out.shape)  # [1, 3, 2]
	    print(out)
	    # [[[1., 2.],
	    #   [3., 4.],
	    #   [5., 6.]]]
L
Leo Chen 已提交
1648
    """
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
        return _C_ops.final_state_stack(x, axis)

    if _in_legacy_dygraph():
        return _C_ops.stack(x, 'axis', axis)

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
        if isinstance(x, Variable) and x.desc.type(
        ) == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            x = [x]
        else:
            raise TypeError("The type of '%s' in %s must be %s, but received %s"
                            % ('x', 'stack',
                               'list[Tensor], tuple[Tensor] or TensorArray',
                               type(x)))

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
            check_variable_and_dtype(i, 'x', \
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'stack')

        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})

    return out
1696 1697


1698
def split(x, num_or_sections, axis=0, name=None):
1699 1700
    """
    Split the input tensor into multiple sub-Tensors.
1701
    
1702
    Args:
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1714
    Returns:
1715
        list(Tensor): The list of segmented Tensors.
1716
    
1717 1718
    Example:
        .. code-block:: python
1719
            
1720 1721
            import paddle
            
L
Leo Chen 已提交
1722 1723
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1724

L
Leo Chen 已提交
1725 1726 1727 1728
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1729 1730

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1731 1732 1733
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1734 1735

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1736 1737 1738
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1739
            
L
Leo Chen 已提交
1740
            # axis is negative, the real axis is (rank(x) + axis)=1
1741
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1742 1743 1744
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1745
    """
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0]
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
                "received %s." % (type(num_or_sections)))
        out = [_varbase_creator() for n in range(num)]
        _C_ops.split(input, out, *attrs)
        return out

    check_variable_and_dtype(
        input, 'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'split')
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
    return outs
1850 1851


L
Leo Chen 已提交
1852
def squeeze(x, axis=None, name=None):
1853
    """
L
Leo Chen 已提交
1854
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
1855 1856 1857 1858
    
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
1859

L
Leo Chen 已提交
1860 1861 1862
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
1863 1864 1865 1866 1867 1868

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
1869 1870
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
1871
          Output:
L
Leo Chen 已提交
1872
            out.shape = [3, 5]
1873 1874 1875 1876

        Case2:

          Input:
L
Leo Chen 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
1887
          Output:
L
Leo Chen 已提交
1888
            out.shape = [3, 5]
1889

L
Leo Chen 已提交
1890
        Case4:
1891 1892

          Input:
L
Leo Chen 已提交
1893 1894
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
1895
          Output:
L
Leo Chen 已提交
1896
            out.shape = [1, 3, 5]
1897 1898

    Args:
1899
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
1900
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
1901 1902 1903
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
1904 1905 1906
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
1907
        Tensor: Squeezed Tensor with the same data type as input Tensor.
1908 1909 1910

    Examples:
        .. code-block:: python
1911

1912
            import paddle
L
Leo Chen 已提交
1913 1914 1915
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
1916 1917

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
1918
            print(output.shape)  # [5, 10]
1919

1920 1921 1922 1923
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

1924
    """
L
Leo Chen 已提交
1925 1926 1927 1928 1929 1930
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
    input = x
    axes = axis
    if in_dygraph_mode():
        return _C_ops.final_state_squeeze(input, axes)[1]
    if _in_legacy_dygraph():
        out, _ = _C_ops.squeeze2(input, 'axes', axes)
        return out

    helper = LayerHelper("squeeze", **locals())
    check_variable_and_dtype(input, 'input', [
        'float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64',
        'complex64', 'complex128'
    ], 'squeeze')
    check_type(axes, 'axis/axes', (list, tuple), 'squeeze')
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs={"axes": axes},
        outputs={"Out": out,
                 "XShape": x_shape})

    return out
1956 1957


1958
@inplace_apis_in_dygraph_only
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

W
wanghuancoder 已提交
1971
    out, _ = _C_ops.squeeze2_(x, 'axes', axis)
1972
    return out
1973 1974


D
duanboqiang 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
            output = paddle.unique_consecutive(x) # 
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhiboniu 已提交
2032
    if paddle.in_dynamic_mode():
2033
        out, inverse, counts = _C_ops.unique_consecutive(
D
duanboqiang 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
    helper.append_op(
        type="unique_consecutive",
        inputs={"X": x},
        attrs=attrs,
        outputs=outputs)
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
2081 2082 2083 2084 2085
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
2086
           dtype="int64",
Z
Zhang Ting 已提交
2087
           name=None):
2088
    r"""
Z
Zhang Ting 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2100 2101
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

2115
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2116 2117 2118 2119 2120 2121 2122
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

2123
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2136
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
    if _non_static_mode():
        if in_dygraph_mode():
            out, indices, inverse, counts = _C_ops.final_state_unique(
                x, return_index, return_inverse, return_counts, axis,
                attr_dtype)
        if _in_legacy_dygraph():
            out, inverse, indices, counts = _C_ops.unique(
                x, 'dtype', attr_dtype, 'return_index', return_index,
                'return_inverse', return_inverse, 'return_counts',
                return_counts, 'axis', axis, "is_sorted", True)
Z
Zhang Ting 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2165
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2166 2167 2168 2169 2170
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2171
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2172 2173 2174 2175 2176 2177 2178 2179
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
2180 2181
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
2182
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
2183
        dtype=attr_dtype, stop_gradient=True)
2184 2185 2186 2187 2188 2189 2190 2191
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2209
def unsqueeze(x, axis, name=None):
2210
    """
2211 2212 2213
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2214

2215 2216 2217 2218
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2219
    Args:
2220 2221 2222 2223 2224 2225
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2226 2227

    Returns:
2228
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2229 2230 2231

    Examples:
        .. code-block:: python
2232

2233 2234
            import paddle

2235 2236 2237 2238 2239 2240 2241 2242
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
2243

L
Leo Chen 已提交
2244
            axis = paddle.to_tensor([0, 1, 2])
2245 2246
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
2247 2248 2249 2250 2251 2252

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2253
            
2254
    """
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
            out, _ = _C_ops.unsqueeze2(input, 'axes', axes)
            return out
        return _C_ops.final_state_unsqueeze(input, axes)[1]

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
    check_variable_and_dtype(input, 'input', [
        'float16',
        'float32',
        'float64',
        'bool',
        'int8',
        'int16',
        'int32',
        'int64',
        'complex64',
        'complex128',
    ], 'unsqueeze')
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out,
                 "XShape": x_shape})
2308

2309
    return out
2310 2311


2312
@inplace_apis_in_dygraph_only
2313 2314 2315 2316 2317
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2318 2319 2320 2321 2322 2323 2324 2325 2326
    if isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, Variable):
        axis = axis.numpy().tolist()
    elif isinstance(axis, (list, tuple)):
        axis = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in axis
        ]
W
wanghuancoder 已提交
2327
    out, _ = _C_ops.unsqueeze2_(x, 'axes', axis)
2328
    return out
2329 2330


2331
def gather(x, index, axis=None, name=None):
2332
    """
2333 2334
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2335 2336 2337 2338 2339 2340

    .. code-block:: text


                Given:

2341
                x = [[1, 2],
2342 2343 2344
                     [3, 4],
                     [5, 6]]

2345 2346
                index = [1, 2]
                axis=[0]
2347 2348 2349

                Then:

2350
                out = [[3, 4],
2351 2352
                       [5, 6]] 

2353
    Args:
2354
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2355 2356
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2357
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2358
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2359 2360
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2361 2362

    Returns:
2363 2364
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
2365 2366 2367 2368 2369 2370
    Examples:

        .. code-block:: python

            import paddle

2371 2372
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2373 2374
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2375
    """
2376 2377
    if axis is None:
        axis = 0
2378

2379 2380 2381
    if in_dygraph_mode():
        return _C_ops.final_state_gather(x, index, axis)
    if _in_legacy_dygraph():
2382
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
W
wanghuancoder 已提交
2383
        return _C_ops.gather(x, index, None, "axis", axis, "overwrite", False)
2384 2385

    check_variable_and_dtype(
2386 2387
        x, 'x',
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2388 2389
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2390

2391 2392 2393
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2394
    helper = LayerHelper('gather', **locals())
2395
    dtype = helper.input_dtype('x')
2396
    out = helper.create_variable_for_type_inference(dtype)
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
    if not isinstance(axis, Variable):
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index},
            attrs={'axis': axis,
                   'overwrite': False},
            outputs={"Out": out})
    else:
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index,
                    "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out})

2414
    return out
myq406450149's avatar
myq406450149 已提交
2415 2416 2417 2418


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2419

myq406450149's avatar
myq406450149 已提交
2420
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2421

myq406450149's avatar
myq406450149 已提交
2422
    Args:
2423 2424 2425
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. 
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2426
    Returns:
2427
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2428 2429 2430

    Example:
        .. code-block:: python
2431

myq406450149's avatar
myq406450149 已提交
2432
            import paddle
2433
            import numpy as np
myq406450149's avatar
myq406450149 已提交
2434
            # input is a variable which shape is [3, 4, 5]
2435 2436 2437
            np_input = np.random.rand(3, 4, 5).astype('float32')
            input = paddle.to_tensor(np_input)
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2438 2439 2440
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
2441
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2442 2443 2444 2445 2446 2447
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
2448 2449 2450
    if in_dygraph_mode():
        return _C_ops.final_state_unbind(input, axis)

myq406450149's avatar
myq406450149 已提交
2451 2452 2453 2454 2455 2456 2457 2458
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2459
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2460
        return _C_ops.unbind(input, num, 'axis', axis)
2461 2462 2463 2464 2465 2466

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
2477 2478


S
ShenLiang 已提交
2479 2480 2481 2482 2483 2484
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
2485
    
S
ShenLiang 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
S
sunzhongkai588 已提交
2515 2516 2517 2518
            
            If True, use the overwrite mode to update the output of the same index,
	        if False, use the accumulate mode to update the output of the same index.Default value is True.
        
S
ShenLiang 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle

2529 2530 2531
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
    if in_dygraph_mode():
        return _C_ops.final_state_scatter(x, index, updates, overwrite)
    else:
        if _in_legacy_dygraph():
            return _C_ops.scatter(x, index, updates, 'overwrite', overwrite)
        else:
            check_variable_and_dtype(
                x, 'dtype',
                ['float32', 'float64', 'float16', 'int32', 'int64'], 'scatter')
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            helper.append_op(
                type="scatter",
                inputs={"X": x,
                        "Ids": index,
                        "Updates": updates},
                attrs={'overwrite': overwrite},
                outputs={"Out": out})
            return out
S
ShenLiang 已提交
2573 2574


2575
@inplace_apis_in_dygraph_only
2576 2577 2578 2579 2580
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
W
wanghuancoder 已提交
2581
    return _C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2582 2583


2584
def scatter_nd_add(x, index, updates, name=None):
2585
    r"""
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2628
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            output = paddle.scatter_nd_add(x, index, updates)
    """
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    if in_dygraph_mode():
        op = getattr(_C_ops, 'scatter_nd_add')
        return op(x, index, updates)
    else:
        if _in_legacy_dygraph():
            op = getattr(_C_ops, 'scatter_nd_add')
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type="scatter_nd_add",
                inputs={"X": x,
                        "Index": index,
                        "Updates": updates},
                outputs={"Out": output})
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
2717 2718


2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
2733
    
2734 2735 2736 2737 2738 2739 2740 2741
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
2742
            x = paddle.to_tensor(x_np)
2743

2744
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
2758
    return split(x, num_or_sections=chunks, axis=axis, name=name)
2759 2760


L
lilong12 已提交
2761 2762
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
2763 2764

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
2765
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
2766 2767 2768

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
2769
    Args:
L
lilong12 已提交
2770
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
2771
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
2772 2773 2774
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
2775
    Returns:
2776
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
2777

L
lilong12 已提交
2778 2779
    Examples:
        .. code-block:: python
L
lilong12 已提交
2780

L
lilong12 已提交
2781
            import paddle
L
lilong12 已提交
2782

2783
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
2784
            out = paddle.tile(data, repeat_times=[2, 1])
2785
            np_out = out.numpy()
2786 2787
            # [[1, 2, 3]
            #  [1, 2, 3]]
L
lilong12 已提交
2788

2789
            out = paddle.tile(data, repeat_times=(2, 2))
2790
            np_out = out.numpy()
2791 2792
            # [[1, 2, 3, 1, 2, 3]
            #  [1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2793

2794
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
2795
            out = paddle.tile(data, repeat_times=repeat_times)
2796
            np_out = out.numpy()
2797
            # [[1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2798
    """
H
hong 已提交
2799
    if in_dygraph_mode():
2800 2801 2802 2803 2804
        if isinstance(repeat_times, core.eager.Tensor):
            assert (repeat_times.ndim == 1,
                    "Only support ndim == 1 while repeat_times is a Tensor.")
            repeat_times = repeat_times.numpy().tolist()

H
hong 已提交
2805 2806 2807
        return _C_ops.final_state_tile(x, repeat_times)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
2808
        return _C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
2809

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
2820
                type_tuple = (int, np.int32, np.int64)
2821 2822
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
2823

L
lilong12 已提交
2824 2825
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
2826
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
2827 2828
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
2829
            "must set its stop_gradient to be True by "
2830 2831 2832
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
2833

L
lilong12 已提交
2834 2835 2836
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
2837 2838 2839 2840 2841 2842 2843 2844
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
2845
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
2846 2847 2848 2849 2850
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
2851
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
2863 2864


L
lilong12 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
2874
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

2885 2886
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
2887
            out = paddle.expand_as(data_x, data_y)
2888
            np_out = out.numpy()
L
lilong12 已提交
2889 2890
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
2891 2892 2893
    if in_dygraph_mode():
        return _C_ops.final_state_expand_as(x, None, y.shape)

H
hong 已提交
2894
    if _non_static_mode():
W
wanghuancoder 已提交
2895
        return _C_ops.expand_as_v2(x, 'target_shape', y.shape)
2896

L
lilong12 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
2907
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
2908

2909
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
2910 2911
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
2912 2913 2914 2915 2916
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out})
L
lilong12 已提交
2917 2918 2919
    return out


2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
Z
zhiboniu 已提交
2948
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
2949
        return _C_ops.expand_v2(x, 'shape', shape)
2950 2951 2952 2953 2954 2955 2956 2957 2958

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
2959
                type_tuple = (int, np.int32, np.int64)
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


3007 3008 3009 3010 3011
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
3012
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
3013 3014 3015


    Args:
L
lilong12 已提交
3016 3017 3018 3019
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
3020 3021 3022
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3023
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3024 3025 3026 3027 3028 3029

    Examples:
        .. code-block:: python

            import paddle

3030
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3031
            out = paddle.expand(data, shape=[2, 3])
3032
            print(out)
3033 3034
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3035 3036 3037
    if in_dygraph_mode():
        return _C_ops.final_state_expand(x, shape)

Z
zhiboniu 已提交
3038
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
3039
        return _C_ops.expand_v2(x, 'shape', shape)
3040

3041 3042 3043 3044 3045 3046 3047 3048
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3049
                type_tuple = (int, np.int32, np.int64)
3050 3051 3052
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

3053
    check_variable_and_dtype(
3054 3055
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
3056
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3057
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
3058 3059
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
3060
                         "some_var.stop_gradient = True, supporting "
3061 3062
                         "some_var as the input.")

3063 3064 3065
    inputs = {"X": [x]}
    attrs = {}

3066
    helper = LayerHelper('expand', **locals())
3067 3068 3069 3070 3071

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3072
                attrs_expand_shape.append(-2)
3073 3074 3075
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
3076
                    "All elements in shape of expand must be positive or -1.")
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
3093 3094


3095 3096 3097 3098
def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

3099 3100 3101 3102 3103
    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode. 
    If you want to use the Tensor copy version, please use `Tensor.clone` like 
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
3134 3135
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3136 3137
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3138
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3139 3140 3141 3142 3143 3144

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python
3145
           :name: code-example1
3146 3147 3148

            import paddle

3149 3150
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3151

3152 3153 3154
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3155

3156 3157
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3158
            # the shape of out_2 is [4, 12].
3159

3160
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3161
            out = paddle.reshape(x, shape=shape_tensor)
3162
            print(out.shape)
3163
            # the shape is [8, 6].
3164 3165 3166 3167 3168
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3169
    """
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        #TODO(zhiqiu): enable inplace in dygraph mode.
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
            out, _ = _C_ops.reshape2(x, None, 'shape', shape)
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
            out, _ = _C_ops.reshape2(x, shape)
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
                out, _ = _C_ops.reshape2(x, None, 'shape', shape)
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
                out, _ = _C_ops.reshape2(x, shape)
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
                    " got '{}.'".format(type(shape)))

            return dygraph_utils._append_activation_in_dygraph(out, act)

    check_variable_and_dtype(x, 'x', [
        'float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'bool',
        'uint16'
    ], 'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
                        % dim_idx)
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="reshape2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out,
                 "XShape": x_shape})

    return helper.append_activation(out)
3288 3289


3290
@inplace_apis_in_dygraph_only
3291 3292 3293 3294 3295
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3296 3297 3298 3299 3300
    if isinstance(shape, (list, tuple)):
        shape = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in shape
        ]
W
wanghuancoder 已提交
3301
        out, _ = _C_ops.reshape2_(x, None, 'shape', shape)
3302 3303 3304
        return out
    elif isinstance(shape, Variable):
        shape.stop_gradient = True
W
wanghuancoder 已提交
3305
        out, _ = _C_ops.reshape2_(x, shape)
3306
        return out
3307 3308


3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3328 3329 3330 3331 3332 3333 3334
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3335 3336 3337 3338

            * Case 1:
                index = [[1]]

3339 3340
                gather_nd(x, index)
                         = [x[1, :, :]]
3341 3342 3343 3344 3345 3346 3347
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3348 3349
                gather_nd(x, index)
                         = [x[0, 2, :]]
3350 3351 3352 3353 3354
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3355 3356
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
3372
            
3373 3374
            import paddle
            
3375 3376 3377
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3378 3379 3380 3381
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
    if in_dygraph_mode():
        return _C_ops.final_state_gather_nd(x, index)
    else:
        if _in_legacy_dygraph():
            return _C_ops.gather_nd(x, index)
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather_nd",
        inputs={"X": x,
                "Index": index},
        outputs={"Out": output})
    return output
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3448

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
    Args:
        x (Tensor): An N-D ``Tensor``. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].                                
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3480
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3481 3482 3483 3484
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
    helper = LayerHelper('strided_slice', **locals())

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'strided_slice')
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
            check_dtype(list_input.dtype, input_name, ['int32'],
                        'strided_slice')
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if _non_static_mode():
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})

    return out
F
From00 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715


def tensordot(x, y, axes=2, name=None):
    r"""
    This function computes a contraction, which sum the product of elements from two tensors along the given axes. 

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

            1. It could be a non-negative integer ``n``, 
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
        
            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes. 
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
        
            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``. 
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract. 
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``. 
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
        
            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list 
               and applied the same rules described above to determine the contraction axes. 
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property. 
                             For more information, please refer to :ref:`api_guide_Name` .

    Return: 
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``. 
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
    
    NOTES:
        1. This function supports tensor broadcast, 
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
        2. This function also supports axes expansion, 
           when the two given axis sequences for ``x`` and ``y`` are of different lengths, 
           the shorter sequence will expand the same axes as the longer one at the end. 
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]], 
           the axis sequence for ``x`` is [0, 1, 2, 3], 
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
  
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.   
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
            #      [28312230., 30496530., 32680830., 34865130.]] 
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
3716
        if paddle.in_dynamic_mode():
F
From00 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
            return tolist(var)
        raise TypeError(
            "The 'axes' with type 'Tensor' in " + op_type +
            " is not available in static graph mode, "
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
            "The 'axes' in " + op_type +
            f" should not be negative, but received axes={axes}.")
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
            assert sx == sy, "The dimensional size for 'x' and 'y' in " + op_type + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
        [not_contraction_size_x, contraction_size])
    y = y.transpose(perm=perm_y).reshape(
        [contraction_size, not_contraction_size_y])
    out = x.matmul(y).reshape(shape_out)
    return out
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831


def as_complex(x, name=None):
    """Transform a real tensor to a complex tensor. 
    
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e. 
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
Z
zhiboniu 已提交
3832
    if paddle.in_dynamic_mode():
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
        return paddle._C_ops.as_complex(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(x.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
    """Transform a complex tensor to a real tensor. 
    
    The data type of the input tensor is 'complex64' or 'complex128', and the data 
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
Z
zhiboniu 已提交
3881
    if paddle.in_dynamic_mode():
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
        return paddle._C_ops.as_real(x)

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
3893 3894


K
kuizhiqing 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
3904
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
3905 3906 3907 3908 3909 3910 3911
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

3912 3913 3914 3915 3916
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

Z
zhiboniu 已提交
3935
    if paddle.in_dynamic_mode():
K
kuizhiqing 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
        if isinstance(repeats, int):
            return _C_ops.repeat_interleave(x, None, 'Repeats', repeats, 'dim',
                                            axis)
        elif isinstance(repeats, Variable):
            return _C_ops.repeat_interleave(x, repeats, 'dim', axis)

    helper = LayerHelper("repeat_interleave", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.manipulation.repeat_interleave')

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0
        })
    return out


3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
        
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
            paddle.moveaxis(x, 0, 1) # equivalent to paddle.t(x)
            # [3, 2]  
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
        dst), "'source' must have the same number with 'destination'"

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
        assert isinstance(axis[0],
                          int), "Each elemment of 'source' must be integer."
        if axis[0] < 0:
            assert axis[
                0] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            src[i] += ndim
        else:
            assert axis[
                0] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)

        assert isinstance(axis[1],
                          int), "Each elemment of 'source' must be integer."
        if axis[1] < 0:
            assert axis[
                1] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            dst[i] += ndim
        else:
            assert axis[
                1] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

Z
zhiboniu 已提交
4042
    if paddle.in_dynamic_mode():
4043 4044 4045
        out, _ = _C_ops.transpose2(x, 'axis', perm)
        return out

4046 4047 4048 4049
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'moveaxis')
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'XShape': [x_shape]},
        attrs={'axis': perm})
    return out
4061 4062


4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
        assert axis < ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
    else:
        assert axis >= -ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
    # This function is used in take/put_along_axis 
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4088 4089 4090 4091 4092
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4093
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4094
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4095
            and need to broadcast against arr. Supported data type are int and int64.
4096 4097 4098 4099 4100 4101 4102
        axis (int) : The axis to take 1d slices along. 

    Returns: 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python
4103
           :name: code-example1
4104 4105 4106

            import paddle

4107 4108
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4109 4110 4111 4112 4113
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4114 4115 4116 4117 4118 4119 4120 4121
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4122
    if _non_static_mode():
4123
        indices = paddle.broadcast_to(indices, broadcast_shape)
4124 4125 4126 4127
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4128 4129
        if not _in_legacy_dygraph():
            return _C_ops.final_state_take_along_axis(arr, indices, axis)
4130 4131 4132 4133 4134 4135
        return _C_ops.take_along_axis(arr, indices, 'Axis', axis)
    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'take_along_axis')
4136
    indices = paddle.broadcast_to(indices, broadcast_shape)
4137 4138 4139 4140
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr,
                "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result})
    return result
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
        axis (int) : The axis to put 1d slices along. 
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
    Returns : 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python
4168
            :name: code-example1
4169 4170 4171

            import paddle

4172 4173
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4174 4175 4176 4177 4178 4179 4180 4181
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4182 4183 4184 4185 4186
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4187
    if _non_static_mode():
4188 4189
        values = paddle.to_tensor(values) if not isinstance(
            values, paddle.Tensor) else values
4190 4191 4192
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4193 4194 4195
        if in_dygraph_mode():
            return _C_ops.final_state_put_along_axis(arr, indices, values, axis,
                                                     reduce)
4196 4197 4198 4199 4200 4201 4202 4203
        return _C_ops.put_along_axis(arr, indices, values, "Axis", axis,
                                     "Reduce", reduce)

    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'put_along_axis')
4204 4205 4206
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr,
                "Index": indices,
                "Value": values},
        attrs={"Axis": axis,
               "Reduce": reduce},
        outputs={"Result": result})
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4224
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4225 4226
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4227 4228 4229 4230 4231
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4232 4233
    values = paddle.to_tensor(values) if not isinstance(
        values, paddle.Tensor) else values
4234 4235 4236
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4237 4238
    return _C_ops.put_along_axis_(arr, indices, values, "Axis", axis, "Reduce",
                                  reduce)
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252


# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
    'tolist': tolist
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)