manipulation.py 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core, reshape
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import concat  #DEFINE_ALIAS
from ..fluid.layers import expand  #DEFINE_ALIAS
from ..fluid.layers import expand_as  #DEFINE_ALIAS
from ..fluid.layers import flatten  #DEFINE_ALIAS
from ..fluid.layers import reshape  #DEFINE_ALIAS
from ..fluid.layers import reverse  #DEFINE_ALIAS
from ..fluid.layers import scatter  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unique  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

W
Wilber 已提交
39
__all__ = [
40 41 42 43 44
    'cast',
    'concat',
    'expand',
    'expand_as',
    'flatten',
45
    'gather',
46 47 48 49 50 51 52 53
    #       'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    #       'scatter_nd_add',
    #       'scatter_nd',
    #       'shard_index',
    'slice',
54 55 56
    'split',
    'squeeze',
    'stack',
57 58 59 60
    'strided_slice',
    'transpose',
    'unique',
    #       'unique_with_counts',
61
    'unsqueeze',
62
    'unstack',
W
Wilber 已提交
63
    'flip',
myq406450149's avatar
myq406450149 已提交
64
    'unbind',
65
    'roll'
W
Wilber 已提交
66 67 68 69 70
]


def flip(input, dims, name=None):
    """
S
swtkiwi 已提交
71 72 73
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip

W
Wilber 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

    Reverse the order of a n-D tensor along given axis in dims.

    Args:
        input (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
            should be float32, float64, int32, int64, bool.
        dims (list): The axis to flip on.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np
          input = fluid.data(name="x", shape=[-1, 2, 2], dtype='float32')
          output = paddle.flip(input, dims=[0, 1])
          exe = fluid.Executor(fluid.CPUPlace())
          exe.run(fluid.default_startup_program())
          img = np.arange(12).reshape((3,2,2)).astype(np.float32)
          res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
          print(res) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
    """
    helper = LayerHelper("flip", **locals())
    check_type(input, 'X', (Variable), 'flip')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
    check_type(dims, 'dims', (list, tuple), 'flip')
    assert len(dims) > 0, 'len(dims) must be greater than 0.'
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"dims": dims})
    return out
120 121 122 123


def roll(input, shifts, dims=None):
    """
S
swtkiwi 已提交
124 125 126
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    Roll the `input` tensor along the given dimension(s). Elements that are shifted beyond 
    the last position are re-introduced at the first position. If a dimension is not specified, 
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
        input (Variable): The input tensor variable.
        shifts (int|list|tuple): The number of places by which the elements
                           of the `input` tensor are shifted.
        dims (int|list|tuple|None): Dimentions along which to roll.

    Returns:
        Variable: A Tensor with same data type as `input`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data = np.array([[1.0, 2.0, 3.0],
                             [4.0, 5.0, 6.0],
                             [7.0, 8.0, 9.0]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data)
                out_z1 = paddle.roll(x, shifts=1)
                print(out_z1.numpy())
                #[[9. 1. 2.]
                # [3. 4. 5.]
                # [6. 7. 8.]]
                out_z2 = paddle.roll(x, shifts=1, dims=0)
                print(out_z2.numpy())
                #[[7. 8. 9.]
                # [1. 2. 3.]
                # [4. 5. 6.]]
    """
    helper = LayerHelper("roll", **locals())
    origin_shape = input.shape
    if type(shifts) == int:
        shifts = [shifts]
    if type(dims) == int:
        dims = [dims]

    if dims:
        check_type(dims, 'dims', (list, tuple), 'roll')
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
        if dims is None:
            input = core.ops.reshape(input, 'shape', [-1, 1])
            dims = [0]
        out = core.ops.roll(input, 'dims', dims, 'shifts', shifts)
        return core.ops.reshape(out, 'shape', origin_shape)

    out = helper.create_variable_for_type_inference(input.dtype)

    if dims is None:
        input = reshape(input, shape=[-1, 1])
        dims = [0]

    helper.append_op(
        type='roll',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'dims': dims,
               'shifts': shifts})
    out = reshape(out, shape=origin_shape, inplace=True)
    return out
194 195 196 197


def stack(x, axis=0, out=None, name=None):
    """
S
swtkiwi 已提交
198 199 200
	:alias_main: paddle.stack
	:alias: paddle.stack,paddle.tensor.stack,paddle.tensor.manipulation.stack

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    This OP stacks all the inputs :code:`x` along axis.

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:


          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.

    Returns:
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.

    Example:    
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data1 = np.array([[1.0, 2.0]])
            data2 = np.array([[3.0, 4.0]])
            data3 = np.array([[5.0, 6.0]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(data1)
                x2 = fluid.dygraph.to_variable(data2)
                x3 = fluid.dygraph.to_variable(data3)
                result = paddle.stack([x1, x2, x3], axis=0)
                # result shape: [3, 1, 2]
                # result value: [[[1.0, 2.0]],
                #                [[3.0, 4.0]],
                #                [[5.0, 6.0]]]
    """

    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
    out = helper.create_variable_for_type_inference(x[0].dtype)
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})

    return out


def split(input, num_or_sections, dim=-1, name=None):
    """
S
swtkiwi 已提交
311 312 313
	:alias_main: paddle.split
	:alias: paddle.split,paddle.tensor.split,paddle.tensor.manipulation.split

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    Split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Variable): The list of segmented Tensor variables.
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.
    Example:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
            with fluid.dygraph.guard():
                input_1 = np.random.random([4, 6, 6]).astype("int32")
                # input is a variable which shape is [4, 6, 6]
                input = fluid.dygraph.to_variable(input_1)

                x0, x1, x2 = paddle.split(input, num_or_sections=3, dim=1)
                # x0.shape [4, 2, 6]
                # x1.shape [4, 2, 6]
                # x2.shape [4, 2, 6]
    """
    if in_dygraph_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            assert dim.shape == (1,
                                 ), "dim of type Variable should have shape [1]"
            dim = dim[0]
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                raise TypeError(
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))
        return core.ops.split(input, num, *attrs)

    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
    return outs


def squeeze(input, axes, out=None, name=None):
    """
S
swtkiwi 已提交
450 451 452
	:alias_main: paddle.squeeze
	:alias: paddle.squeeze,paddle.tensor.squeeze,paddle.tensor.manipulation.squeeze

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.


    .. code-block:: text

        Case1:

          Input:
            X.shape = (1, 3, 1, 5)
            axes = [0]
          Output:
            Out.shape = (3, 1, 5)

        Case2:

          Input:
            X.shape = (1, 3, 1, 5)
            axes = []
          Output:
            Out.shape = (3, 5)

        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

    Args:
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
        Variable: Output squeezed Tensor. Data type is same as input Tensor.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            with fluid.dygraph.guard():
                input_1 = np.random.random([5, 1, 10]).astype("int32")
                # input is a variable which shape is [5, 1, 10]
                input = fluid.dygraph.to_variable(input_1)

                output = paddle.squeeze(input, axes=[1])
                # output.shape [5, 10]

    """

    helper = LayerHelper("squeeze", **locals())
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
    check_type(axes, 'axes', list, 'squeeze')
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type="squeeze2",
        inputs={"X": input},
        attrs={"axes": axes},
        outputs={"Out": out,
                 "XShape": x_shape})

    return out


def unsqueeze(input, axes, out=None, name=None):
    """
S
swtkiwi 已提交
529 530 531
	:alias_main: paddle.unsqueeze
	:alias: paddle.unsqueeze,paddle.tensor.unsqueeze,paddle.tensor.manipulation.unsqueeze

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    Insert single-dimensional entries to the shape of a Tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:

    .. code-block:: text

      Given a tensor such that tensor with shape [3, 4, 5],
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].

    Args:
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
        name (str|None): Name for this layer.

    Returns:
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            with fluid.dygraph.guard():
                input_1 = np.random.random([5, 10]).astype("int32")
                # input is a variable which shape is [5, 10]
                input = fluid.dygraph.to_variable(input_1)

                output = paddle.unsqueeze(input, axes=[1])
                # output.shape [5, 1, 10]
    """
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        contain_var = not all(not isinstance(ele, Variable) for ele in axes)
        if contain_var:
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out,
                 "XShape": x_shape})

    return out


def gather(input, index, overwrite=True):
    """
S
swtkiwi 已提交
612 613 614
	:alias_main: paddle.gather
	:alias: paddle.gather,paddle.tensor.gather,paddle.tensor.manipulation.gather

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
    **Gather Layer**

    Output is obtained by gathering entries of the outer-most dimension
    of X indexed by `index` and concatenate them together.

    .. math::

        Out = X[Index]


    .. code-block:: text


                Given:

                X = [[1, 2],
                     [3, 4],
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]
    Args:
        input (Variable): The source input tensor with rank>=1. Supported data type is
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
            if False, use the accumulate mode to update the grad of the same index.
            Default value is True.



    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid


            with fluid.dygraph.guard():
                input_1 = np.array([[1,2],[3,4],[5,6]])
                index_1 = np.array([0,1])
                input = fluid.dygraph.to_variable(input_1)
                index = fluid.dygraph.to_variable(index_1)
                output = paddle.gather(input, index)
                # expected output: [[1,2],[3,4]]
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
    return out
myq406450149's avatar
myq406450149 已提交
682 683 684 685


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
686 687 688
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind

myq406450149's avatar
myq406450149 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs