manipulation.py 107.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

18
from ..fluid.layers import core
W
Wilber 已提交
19
from ..fluid.layer_helper import LayerHelper
Z
zhiboniu 已提交
20
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_, device_guard, dygraph_only
W
Wilber 已提交
21
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
22 23
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
24
import numpy as np
25
# TODO: define functions to manipulate a tensor  
26 27 28 29
from ..fluid.layers import cast  # noqa: F401
from ..fluid.layers import slice  # noqa: F401
from ..fluid.layers import transpose  # noqa: F401
from ..fluid.layers import unstack  # noqa: F401
30

31 32
from ..fluid.layers import scatter_nd  # noqa: F401
from ..fluid.layers import shard_index  # noqa: F401
33
from ..fluid.layers.nn import _elementwise_op_in_dygraph
L
Leo Chen 已提交
34
from ..fluid import layers
35
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
36
import paddle
W
wanghuancoder 已提交
37
from paddle import _C_ops
38
from paddle.tensor.attribute import _complex_to_real_dtype, _real_to_complex_dtype
39

40 41
__all__ = []

W
Wilber 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
        x(Tensor): ``x`` is the Tensor we want to filled data inplace
        value(Scale): ``value`` is the value to be filled in x

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
            "The type of 'value'  must be int or float, but received %s." %
            (type(value)))
73 74
    return _C_ops.fill_any_(x, "value_float",
                            float(value), "value_int", int(value))
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104


setattr(core.VarBase, 'fill_', fill_)


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
        x(Tensor): ``x`` is the Tensor we want to filled with zero inplace

    Returns:
        x(Tensor): Tensor x filled with zero inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
105
    return _C_ops.fill_any_(x, "value_float", 0., "value_int", int(0))
106 107 108 109 110


setattr(core.VarBase, 'zero_', zero_)


111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**
    This function fill the value into the x Tensor's diagonal inplace.
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
    Returns:
        Tensor: Tensor with diagonal filled with value.
    Returns type:
        dtype is same as x Tensor
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_diagonal_')
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
    assert len(inshape) >= 2, ('Tensor dims should >= 2 in fill_diagonal_ API')
    if len(inshape) > 2:
        assert len(inshapeset) == 1, (
            'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
        )
    if len(inshape) == 2:
151 152 153 154
        return _C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                     'wrap', wrap)
    return _C_ops.fill_diagonal_(x, 'value', value, 'offset', offset, 'wrap',
                                 True)
155 156 157 158 159


setattr(core.VarBase, 'fill_diagonal_', fill_diagonal_)


160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
    assert dim1 < len(inshape) and dim1 >= -len(inshape), (
        'dim1 should between [-rank,rank) in fill_diagonal_tensor_')
    assert dim2 < len(inshape) and dim2 >= -len(inshape), (
        'dim2 should between [-rank,rank) in fill_diagonal_tensor_')
    assert len(inshape) >= 2, (
        'Tensor dims should >= 2 in fill_diagonal_tensor_')
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset))
    predshape.append(diaglen)
    assert tuple(predshape) == tuple(y.shape), (
        "the y shape should be {}".format(predshape))
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
185 186 187 188
        return _C_ops.fill_diagonal_tensor_(x, y, 'dim1', dim1, 'dim2', dim2,
                                            'offset', offset)
    return _C_ops.fill_diagonal_tensor(x, y, 'dim1', dim1, 'dim2', dim2,
                                       'offset', offset)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
        x(Tensor): ``x`` is the original Tensor
        y(Tensor): ``y`` is the Tensor to filled in x
        dim1(int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2(int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name(str,optional): Name for the operation (optional, default is None)

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Returns type:
        list: dtype is same as x Tensor

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True)


setattr(core.VarBase, 'fill_diagonal_tensor_', fill_diagonal_tensor_)


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
        x(Tensor): ``x`` is the original Tensor
        y(Tensor): ``y`` is the Tensor to filled in x
        dim1(int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2(int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name(str,optional): Name for the operation (optional, default is None)

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Returns type:
        list: dtype is same as x Tensor

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False)


setattr(core.VarBase, 'fill_diagonal_tensor', fill_diagonal_tensor)


Z
zhiboniu 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
@dygraph_only
def tolist(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function translate the paddle.Tensor to python list.

    Args:
        x(Tensor): ``x`` is the Tensor we want to translate to list

    Returns:
        list: A list that contain the same value of current Tensor.

    Returns type:
        list: dtype is same as current Tensor

    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


setattr(core.VarBase, 'tolist', tolist)


302 303 304 305 306 307
def concat(x, axis=0, name=None):
    """

    This OP concatenates the input along the axis.

    Args:
308
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
L
liuyuhui 已提交
309
            float32, float64, int32, int64, uint8. All the Tensors in ``x`` must have same data type.
310 311 312 313
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
314 315 316 317 318
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
319
        Tensor: A Tensor with the same data type as ``x``.
320 321 322 323 324 325

    Examples:
        .. code-block:: python
            
            import paddle
            
326 327 328 329 330 331
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
332 333 334
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
335 336 337
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
338 339 340 341 342 343 344 345 346 347 348 349
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        input(list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.

        name (str, optional): The default value is None. Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
    if in_dygraph_mode():
W
wanghuancoder 已提交
381
        return _C_ops.broadcast_tensors(input, num_inputs)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
                invalid = (output_shape_r[i] != shape[i] and
                           output_shape_r[i] != 1 and shape[i] != 1)
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
420
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
            helper.create_variable_for_type_inference(dtype=helper.input_dtype(
            )))
        i += 1

    inputs = {'X': input}
    helper.append_op(
        type='broadcast_tensors', inputs=inputs, outputs={'Out': out},
        attrs={})

    return out


Y
yaoxuefeng 已提交
445
def flip(x, axis, name=None):
W
Wilber 已提交
446
    """
Y
yaoxuefeng 已提交
447
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
448 449

    Args:
Y
yaoxuefeng 已提交
450
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
451
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
452
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
453 454 455 456
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
457
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
458 459 460 461 462 463

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
464 465 466 467

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
468
          img = paddle.to_tensor(x)
R
Roc 已提交
469 470
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
471

R
Roc 已提交
472 473
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
474
    """
R
Roc 已提交
475 476 477
    if isinstance(axis, int):
        axis = [axis]
    if in_dygraph_mode():
478
        return _C_ops.flip(x, "axis", axis)
R
Roc 已提交
479

W
Wilber 已提交
480
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
481 482
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
483 484 485
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
486
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
487 488 489 490 491 492 493
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
494
        inputs={"X": x},
W
Wilber 已提交
495
        outputs={"Out": out},
Y
yaoxuefeng 已提交
496
        attrs={"axis": axis})
W
Wilber 已提交
497
    return out
498 499


Z
zmxdream 已提交
500 501
def rot90(x, k=1, axes=[0, 1], name=None):
    """
Z
zmxdream 已提交
502
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
503 504 505

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
506
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
507 508
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
Z
zmxdream 已提交
522 523 524 525
          print(data) 
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
526
          y = paddle.rot90(data, 1, [0, 1])
Z
zmxdream 已提交
527 528 529 530
          print(y) 
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
531
          y= paddle.rot90(data, -1, [0, 1])
Z
zmxdream 已提交
532 533 534 535
          print(y) 
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
536 537
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
Z
zmxdream 已提交
538 539 540 541 542 543
          print(data2) 
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
544
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
545 546 547 548 549
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'rot90')
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
        raise ValueError("expected total rotation axes == 2, but got axes = {}".
                         format(total_rot_dims))
    if input_total_dims < 2:
        raise ValueError("expected total dims >= 2, but got total dims = {}".
                         format(input_total_dims))

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".
            format(axes[0], axes[1]))

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
        raise ValueError("Rotation axis0 out of range, axis0 = {}".format(axes[
            0]))
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
        raise ValueError("Rotation axis1 out of range, axis1 = {}".format(axes[
            1]))

Z
zmxdream 已提交
581
    k %= 4
Z
zmxdream 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


597
def flatten(x, start_axis=0, stop_axis=-1, name=None):
598
    r"""
599 600 601 602
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

603 604 605 606
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, please 
    use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
636
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
637
                      float64, int8, int32, int64, uint8.
638 639 640 641 642 643
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
Y
yaoxuefeng 已提交
644
        Tensor: A tensor with the contents of the input tensor, with input \
645 646 647 648
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
649
        ValueError: If x is not a Tensor.
650 651 652 653 654 655 656 657 658
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
659

Y
yaoxuefeng 已提交
660 661
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
662

663 664
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
665 666 667 668

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
669 670
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
671
        raise ValueError("The input x should be a Tensor")
672

673 674 675 676
    if not in_dygraph_mode():
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64', 'uint8'],
            'flatten')
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
W
wanghuancoder 已提交
695 696
        dy_out, _ = _C_ops.flatten_contiguous_range(x, 'start_axis', start_axis,
                                                    'stop_axis', stop_axis)
697 698
        return dy_out

699
    helper = LayerHelper('flatten', **locals())
700 701 702 703 704 705 706 707 708 709 710 711
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

W
wanghuancoder 已提交
737 738
    dy_out, _ = _C_ops.flatten_contiguous_range_(x, 'start_axis', start_axis,
                                                 'stop_axis', stop_axis)
739 740 741
    return dy_out


Y
yaoxuefeng 已提交
742
def roll(x, shifts, axis=None, name=None):
743
    """
Y
yaoxuefeng 已提交
744 745 746
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
747 748 749
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
750
        x (Tensor): The x tensor as input.
751
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
752 753
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
754 755

    Returns:
Y
yaoxuefeng 已提交
756
        Tensor: A Tensor with same data type as `x`.
757 758 759

    Examples:
        .. code-block:: python
C
Chen Long 已提交
760
            
761 762
            import paddle

763 764 765
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
766
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
767
            print(out_z1)
Y
yaoxuefeng 已提交
768 769 770 771
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
772
            print(out_z2)
Y
yaoxuefeng 已提交
773 774 775
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
776
    """
Y
yaoxuefeng 已提交
777
    origin_shape = x.shape
778 779
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
780 781 782 783
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
784
    if axis is not None:
Y
yaoxuefeng 已提交
785 786 787 788 789
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
790 791 792
    else:
        axis = []

793
    if in_dygraph_mode():
W
wanghuancoder 已提交
794
        return _C_ops.roll(x, 'axis', axis, 'shifts', shifts)
795

796 797
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
798

Y
yaoxuefeng 已提交
799
    out = helper.create_variable_for_type_inference(x.dtype)
800

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    if isinstance(shifts, Variable):
        helper.append_op(
            type='roll',
            inputs={'X': x,
                    "ShiftsTensor": shifts},
            outputs={'Out': out},
            attrs={'axis': axis})
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
        helper.append_op(
            type='roll',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis,
                   'shifts': shifts})
816
    return out
817 818


L
Leo Chen 已提交
819
def stack(x, axis=0, name=None):
820
    """
L
Leo Chen 已提交
821 822 823 824 825 826 827
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
863
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
864 865 866 867 868 869 870 871

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
872
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
873
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
874 875 876 877 878
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
879
    Returns:
L
Leo Chen 已提交
880
        Tensor: The stacked tensor with same data type as input.
881 882 883

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
884

885
            import paddle
886
            
L
Leo Chen 已提交
887 888 889
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Leo Chen 已提交
890 891
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
892
            print(out)
L
Leo Chen 已提交
893 894 895 896 897
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
898 899


900
def split(x, num_or_sections, axis=0, name=None):
901 902
    """
    Split the input tensor into multiple sub-Tensors.
903
    
904
    Args:
905 906 907 908 909 910 911 912 913 914 915
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
916
    Returns:
917
        list(Tensor): The list of segmented Tensors.
918
    
919 920
    Example:
        .. code-block:: python
921
            
922 923
            import paddle
            
L
Leo Chen 已提交
924 925
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
926

L
Leo Chen 已提交
927 928 929 930
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
931 932

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
933 934 935
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
936 937

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
938 939 940
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
941
            
L
Leo Chen 已提交
942
            # axis is negative, the real axis is (rank(x) + axis)=1
943
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
944 945 946
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
947
    """
948 949
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
950 951


L
Leo Chen 已提交
952
def squeeze(x, axis=None, name=None):
953
    """
L
Leo Chen 已提交
954
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
955 956 957 958
    
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
959

L
Leo Chen 已提交
960 961 962
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
963 964 965 966 967 968

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
969 970
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
971
          Output:
L
Leo Chen 已提交
972
            out.shape = [3, 5]
973 974 975 976

        Case2:

          Input:
L
Leo Chen 已提交
977 978 979 980 981 982 983 984 985 986
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
987
          Output:
L
Leo Chen 已提交
988
            out.shape = [3, 5]
989

L
Leo Chen 已提交
990
        Case4:
991 992

          Input:
L
Leo Chen 已提交
993 994
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
995
          Output:
L
Leo Chen 已提交
996
            out.shape = [1, 3, 5]
997 998

    Args:
999
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
1000
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
1001 1002 1003
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
1004 1005 1006
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
1007
        Tensor: Squeezed Tensor with the same data type as input Tensor.
1008 1009 1010

    Examples:
        .. code-block:: python
1011

1012
            import paddle
L
Leo Chen 已提交
1013 1014 1015
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
1016 1017

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
1018
            print(output.shape)  # [5, 10]
1019

1020 1021 1022 1023
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

1024
    """
L
Leo Chen 已提交
1025 1026 1027 1028 1029 1030
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
1031

L
Leo Chen 已提交
1032
    return layers.squeeze(x, axis, name)
1033 1034


1035
@inplace_apis_in_dygraph_only
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

W
wanghuancoder 已提交
1048
    out, _ = _C_ops.squeeze2_(x, 'axes', axis)
1049
    return out
1050 1051


D
duanboqiang 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
            output = paddle.unique_consecutive(x) # 
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
    if in_dygraph_mode():
1110
        out, inverse, counts = _C_ops.unique_consecutive(
D
duanboqiang 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
    helper.append_op(
        type="unique_consecutive",
        inputs={"X": x},
        attrs=attrs,
        outputs=outputs)
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
1158 1159 1160 1161 1162
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
1163
           dtype="int64",
Z
Zhang Ting 已提交
1164
           name=None):
1165
    r"""
Z
Zhang Ting 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
1177 1178
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

1192
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
1193 1194 1195 1196 1197 1198 1199
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

1200
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
1213
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
1214
    if in_dygraph_mode():
W
wanghuancoder 已提交
1215
        out, inverse, indices, counts = _C_ops.unique(
Z
Zhang Ting 已提交
1216
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
1237
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
1238 1239 1240 1241 1242
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
1243
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
1244 1245 1246 1247 1248 1249 1250 1251
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
1252 1253
    indices = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
1254
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
1255
        dtype=attr_dtype, stop_gradient=True)
1256 1257 1258 1259 1260 1261 1262 1263
    counts = helper.create_variable_for_type_inference(
        dtype=attr_dtype, stop_gradient=True)
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


1281
def unsqueeze(x, axis, name=None):
1282
    """
1283 1284 1285
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
1286

1287 1288 1289 1290
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

1291
    Args:
1292 1293 1294 1295 1296 1297
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
1298 1299

    Returns:
1300
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
1301 1302 1303

    Examples:
        .. code-block:: python
1304

1305 1306
            import paddle

1307 1308 1309 1310 1311 1312 1313 1314
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
1315

L
Leo Chen 已提交
1316
            axis = paddle.to_tensor([0, 1, 2])
1317 1318
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
1319 1320 1321 1322 1323 1324

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
1325
            
1326 1327
    """

1328
    return layers.unsqueeze(x, axis, name)
1329 1330


1331
@inplace_apis_in_dygraph_only
1332 1333 1334 1335 1336
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
1337 1338 1339 1340 1341 1342 1343 1344 1345
    if isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, Variable):
        axis = axis.numpy().tolist()
    elif isinstance(axis, (list, tuple)):
        axis = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in axis
        ]
W
wanghuancoder 已提交
1346
    out, _ = _C_ops.unsqueeze2_(x, 'axes', axis)
1347
    return out
1348 1349


1350
def gather(x, index, axis=None, name=None):
1351
    """
1352 1353
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
1354 1355 1356 1357 1358 1359

    .. code-block:: text


                Given:

1360
                x = [[1, 2],
1361 1362 1363
                     [3, 4],
                     [5, 6]]

1364 1365
                index = [1, 2]
                axis=[0]
1366 1367 1368

                Then:

1369
                out = [[3, 4],
1370 1371
                       [5, 6]] 

1372
    Args:
1373
        x (Tensor): The source input tensor with rank>=1. Supported data type is
1374 1375
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
1376
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
1377
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
1378 1379
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1380 1381

    Returns:
1382 1383
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
1384 1385 1386 1387 1388 1389
    Examples:

        .. code-block:: python

            import paddle

1390 1391
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
1392 1393
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
1394
    """
1395 1396
    if axis is None:
        axis = 0
1397

1398
    if in_dygraph_mode():
1399
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
W
wanghuancoder 已提交
1400
        return _C_ops.gather(x, index, None, "axis", axis, "overwrite", False)
1401 1402 1403 1404 1405

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
1406

1407 1408 1409
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

1410
    helper = LayerHelper('gather', **locals())
1411
    dtype = helper.input_dtype('x')
1412
    out = helper.create_variable_for_type_inference(dtype)
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    if not isinstance(axis, Variable):
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index},
            attrs={'axis': axis,
                   'overwrite': False},
            outputs={"Out": out})
    else:
        helper.append_op(
            type="gather",
            inputs={"X": x,
                    "Index": index,
                    "Axis": axis},
            attrs={"overwrite": False},
            outputs={"Out": out})

1430
    return out
myq406450149's avatar
myq406450149 已提交
1431 1432 1433 1434


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
1435

myq406450149's avatar
myq406450149 已提交
1436
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
1437

myq406450149's avatar
myq406450149 已提交
1438
    Args:
1439 1440 1441
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. 
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
1442
    Returns:
1443
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
1444 1445 1446

    Example:
        .. code-block:: python
1447

myq406450149's avatar
myq406450149 已提交
1448
            import paddle
1449
            import numpy as np
myq406450149's avatar
myq406450149 已提交
1450
            # input is a variable which shape is [3, 4, 5]
1451 1452 1453
            np_input = np.random.rand(3, 4, 5).astype('float32')
            input = paddle.to_tensor(np_input)
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
1454 1455 1456
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
1457
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
1472
    if in_dygraph_mode():
W
wanghuancoder 已提交
1473
        return _C_ops.unbind(input, num, 'axis', axis)
1474 1475 1476 1477 1478 1479

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
1490 1491


S
ShenLiang 已提交
1492 1493 1494 1495 1496 1497
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
1498
    
S
ShenLiang 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
S
sunzhongkai588 已提交
1528 1529 1530 1531
            
            If True, use the overwrite mode to update the output of the same index,
	        if False, use the accumulate mode to update the output of the same index.Default value is True.
        
S
ShenLiang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle

1542 1543 1544
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1567
        return _C_ops.scatter(x, index, updates, 'overwrite', overwrite)
S
ShenLiang 已提交
1568

L
Li Min 已提交
1569 1570 1571
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'float16', 'int32', 'int64'],
        'scatter')
S
ShenLiang 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


1585
@inplace_apis_in_dygraph_only
1586 1587 1588 1589 1590
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
W
wanghuancoder 已提交
1591
    return _C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
1592 1593


1594
def scatter_nd_add(x, index, updates, name=None):
1595
    r"""
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
1638
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            output = paddle.scatter_nd_add(x, index, updates)
    """
    return layers.scatter_nd_add(x, index, updates, name=None)


1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
1680
    
1681 1682 1683 1684 1685 1686 1687 1688
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1689
            x = paddle.to_tensor(x_np)
1690

1691
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1709 1710
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1711 1712

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1713
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1714 1715 1716

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1717
    Args:
L
lilong12 已提交
1718 1719 1720 1721 1722
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1723
    Returns:
L
lilong12 已提交
1724 1725
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1726 1727
    Examples:
        .. code-block:: python
L
lilong12 已提交
1728

L
lilong12 已提交
1729
            import paddle
L
lilong12 已提交
1730

1731
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1732
            out = paddle.tile(data, repeat_times=[2, 1])
1733
            np_out = out.numpy()
L
lilong12 已提交
1734
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1735 1736

            out = paddle.tile(data, repeat_times=[2, 2])
1737
            np_out = out.numpy()
L
lilong12 已提交
1738 1739
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

1740
            repeat_times = paddle.to_tensor([2, 1], dtype='int32')
L
lilong12 已提交
1741
            out = paddle.tile(data, repeat_times=repeat_times)
1742
            np_out = out.numpy()
L
lilong12 已提交
1743 1744
            # [[1, 2, 3], [1, 2, 3]]
    """
1745
    if in_dygraph_mode():
W
wanghuancoder 已提交
1746
        return _C_ops.tile(x, 'repeat_times', repeat_times)
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1757
                type_tuple = (int, np.int32, np.int64)
1758 1759
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
1760

L
lilong12 已提交
1761 1762
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
1763
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1764 1765
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1766
            "must set its stop_gradient to be True by "
1767 1768 1769
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1770

L
lilong12 已提交
1771 1772 1773
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1774 1775 1776 1777 1778 1779 1780 1781
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1782
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1783 1784 1785 1786 1787
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1788
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1800 1801


L
lilong12 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1811
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

1822 1823
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1824
            out = paddle.expand_as(data_x, data_y)
1825
            np_out = out.numpy()
L
lilong12 已提交
1826 1827
            # [[1, 2, 3], [1, 2, 3]]
    """
1828
    if in_dygraph_mode():
W
wanghuancoder 已提交
1829
        return _C_ops.expand_as_v2(x, 'target_shape', y.shape)
1830

L
lilong12 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
1841
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
1842

1843
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1844 1845
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
1846 1847 1848 1849 1850
    helper.append_op(
        type='expand_as_v2',
        inputs=inputs,
        attrs={'target_shape': y.shape},
        outputs={'Out': out})
L
lilong12 已提交
1851 1852 1853
    return out


1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1883
        return _C_ops.expand_v2(x, 'shape', shape)
1884 1885 1886 1887 1888 1889 1890 1891 1892

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1893
                type_tuple = (int, np.int32, np.int64)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out


1941 1942 1943 1944 1945
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1946
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1947 1948 1949


    Args:
L
lilong12 已提交
1950 1951 1952 1953
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1954 1955 1956
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1957
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1958 1959 1960 1961 1962 1963

    Examples:
        .. code-block:: python

            import paddle

1964
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1965
            out = paddle.expand(data, shape=[2, 3])
1966
            print(out)
1967 1968
            # [[1, 2, 3], [1, 2, 3]]
    """
1969
    if in_dygraph_mode():
W
wanghuancoder 已提交
1970
        return _C_ops.expand_v2(x, 'shape', shape)
1971

1972 1973 1974 1975 1976 1977 1978 1979
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
1980
                type_tuple = (int, np.int32, np.int64)
1981 1982 1983
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

1984
    check_variable_and_dtype(
1985 1986
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
1987
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1988
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1989 1990
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1991
                         "some_var.stop_gradient = True, supporting "
1992 1993
                         "some_var as the input.")

1994 1995 1996
    inputs = {"X": [x]}
    attrs = {}

1997
    helper = LayerHelper('expand', **locals())
1998 1999 2000 2001 2002

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
2003
                attrs_expand_shape.append(-2)
2004 2005 2006
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
2007
                    "All elements in shape of expand must be positive or -1.")
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
2024 2025


2026 2027 2028 2029
def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

2030 2031 2032 2033 2034
    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode. 
    If you want to use the Tensor copy version, please use `Tensor.clone` like 
    ``reshape_clone_x = x.reshape([-1]).clone()``.

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
2065
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

2081 2082
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
2083

2084 2085 2086
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
2087

2088 2089
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
2090
            # the shape of out_2 is [4, 12].
2091

2092
            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
2093 2094 2095
            out = paddle.reshape(x, shape=shape_tensor)
            print(out)
            # the shape is [8, 6].
2096 2097 2098 2099 2100
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

2101 2102
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
2103 2104


2105
@inplace_apis_in_dygraph_only
2106 2107 2108 2109 2110
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
2111 2112 2113 2114 2115
    if isinstance(shape, (list, tuple)):
        shape = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in shape
        ]
W
wanghuancoder 已提交
2116
        out, _ = _C_ops.reshape2_(x, None, 'shape', shape)
2117 2118 2119
        return out
    elif isinstance(shape, Variable):
        shape.stop_gradient = True
W
wanghuancoder 已提交
2120
        out, _ = _C_ops.reshape2_(x, shape)
2121
        return out
2122 2123


2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
2143 2144 2145 2146 2147 2148 2149
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
2150 2151 2152 2153

            * Case 1:
                index = [[1]]

2154 2155
                gather_nd(x, index)
                         = [x[1, :, :]]
2156 2157 2158 2159 2160 2161 2162
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

2163 2164
                gather_nd(x, index)
                         = [x[0, 2, :]]
2165 2166 2167 2168 2169
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

2170 2171
                gather_nd(x, index)
                         = [x[1, 2, 3]]
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
2187
            
2188 2189
            import paddle
            
2190 2191 2192
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
2193 2194 2195 2196 2197 2198
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
2247

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
    Args:
        x (Tensor): An N-D ``Tensor``. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].                                
            # example 2:
            # attr starts is a list which contain tensor Tensor.
2279
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
2280 2281 2282 2283 2284 2285
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """

    return paddle.fluid.layers.strided_slice(
        input=x, axes=axes, starts=starts, ends=ends, strides=strides)
F
From00 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493


def tensordot(x, y, axes=2, name=None):
    r"""
    This function computes a contraction, which sum the product of elements from two tensors along the given axes. 

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

            1. It could be a non-negative integer ``n``, 
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
        
            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes. 
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
        
            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``. 
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract. 
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``. 
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
        
            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list 
               and applied the same rules described above to determine the contraction axes. 
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property. 
                             For more information, please refer to :ref:`api_guide_Name` .

    Return: 
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``. 
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
    
    NOTES:
        1. This function supports tensor broadcast, 
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
        2. This function also supports axes expansion, 
           when the two given axis sequences for ``x`` and ``y`` are of different lengths, 
           the shorter sequence will expand the same axes as the longer one at the end. 
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]], 
           the axis sequence for ``x`` is [0, 1, 2, 3], 
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
  
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.   
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
            #      [28312230., 30496530., 32680830., 34865130.]] 
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
        if in_dygraph_mode():
            return tolist(var)
        raise TypeError(
            "The 'axes' with type 'Tensor' in " + op_type +
            " is not available in static graph mode, "
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
            "The 'axes' in " + op_type +
            f" should not be negative, but received axes={axes}.")
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
            assert sx == sy, "The dimensional size for 'x' and 'y' in " + op_type + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
        [not_contraction_size_x, contraction_size])
    y = y.transpose(perm=perm_y).reshape(
        [contraction_size, not_contraction_size_y])
    out = x.matmul(y).reshape(shape_out)
    return out
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584


def as_complex(x, name=None):
    """Transform a real tensor to a complex tensor. 
    
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e. 
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
    if in_dygraph_mode():
        return paddle._C_ops.as_complex(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(x.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
    """Transform a complex tensor to a real tensor. 
    
    The data type of the input tensor is 'complex64' or 'complex128', and the data 
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
    if in_dygraph_mode():
        return paddle._C_ops.as_real(x)

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
2585 2586


K
kuizhiqing 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
2596
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
2597 2598 2599 2600 2601 2602 2603
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

2604 2605 2606 2607 2608
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

    if in_dygraph_mode():
        if isinstance(repeats, int):
            return _C_ops.repeat_interleave(x, None, 'Repeats', repeats, 'dim',
                                            axis)
        elif isinstance(repeats, Variable):
            return _C_ops.repeat_interleave(x, repeats, 'dim', axis)

    helper = LayerHelper("repeat_interleave", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.manipulation.repeat_interleave')

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0
        })
    return out


2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
        
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
            paddle.moveaxis(x, 0, 1) # equivalent to paddle.t(x)
            # [3, 2]  
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
        dst), "'source' must have the same number with 'destination'"

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
        assert isinstance(axis[0],
                          int), "Each elemment of 'source' must be integer."
        if axis[0] < 0:
            assert axis[
                0] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            src[i] += ndim
        else:
            assert axis[
                0] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)

        assert isinstance(axis[1],
                          int), "Each elemment of 'source' must be integer."
        if axis[1] < 0:
            assert axis[
                1] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            dst[i] += ndim
        else:
            assert axis[
                1] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

    if in_dygraph_mode():
        out, _ = _C_ops.transpose2(x, 'axis', perm)
        return out

    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'moveaxis')

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='transpose2',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'XShape': [x_shape]},
        attrs={'axis': perm})
    return out
2752 2753 2754 2755 2756 2757 2758


def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
2759
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
2760
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
2761
            and need to broadcast against arr. Supported data type are int and int64.
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
        axis (int) : The axis to take 1d slices along. 

    Returns: 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_np = np.array([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index_np = np.array([[0]])
            x = paddle.to_tensor(x_np)
            index = paddle.to_tensor(index_np)
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
2782 2783 2784 2785 2786 2787
    if (arr.shape == indices.shape):
        broadcast_shape = arr.shape
    else:
        broadcast_shape_list = list(arr.shape)
        broadcast_shape_list[axis] = 1
        broadcast_shape = tuple(broadcast_shape_list)
2788 2789 2790 2791 2792 2793 2794 2795
    if in_dygraph_mode():
        indices = paddle.broadcast_to(indices, broadcast_shape)
        return _C_ops.take_along_axis(arr, indices, 'Axis', axis)
    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'take_along_axis')
2796
    indices = paddle.broadcast_to(indices, broadcast_shape)
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="take_along_axis",
        inputs={"Input": arr,
                "Index": indices},
        attrs={"Axis": axis},
        outputs={"Result": result})
    return result
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
        axis (int) : The axis to put 1d slices along. 
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
    Returns : 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_np = np.array([[10, 30, 20], [60, 40, 50]])
            index_np = np.array([[0]])
            x = paddle.to_tensor(x_np)
            index = paddle.to_tensor(index_np)
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
    if (arr.shape == indices.shape):
        broadcast_shape = arr.shape
    else:
        broadcast_shape_list = list(arr.shape)
        broadcast_shape_list[axis] = 1
        broadcast_shape = tuple(broadcast_shape_list)
    if in_dygraph_mode():
        indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.to_tensor(values) if not isinstance(
            values, paddle.Tensor) else values
        values = paddle.broadcast_to(values, broadcast_shape)
        return _C_ops.put_along_axis(arr, indices, values, "Axis", axis,
                                     "Reduce", reduce)

    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'put_along_axis')
    indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, broadcast_shape)
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="put_along_axis",
        inputs={"Input": arr,
                "Index": indices,
                "Value": values},
        attrs={"Axis": axis,
               "Reduce": reduce},
        outputs={"Result": result})
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
    if (arr.shape == indices.shape):
        broadcast_shape = arr.shape
    else:
        broadcast_shape_list = list(arr.shape)
        broadcast_shape_list[axis] = 1
        broadcast_shape = tuple(broadcast_shape_list)

    indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.to_tensor(values) if not isinstance(
        values, paddle.Tensor) else values
    values = paddle.broadcast_to(values, broadcast_shape)
    return _C_ops.put_along_axis_(arr, indices, values, "Axis", axis, "Reduce",
                                  reduce)