manipulation.py 50.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
import six
25
# TODO: define functions to manipulate a tensor  
26 27 28 29 30 31
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

32 33 34 35
from ..fluid.layers import scatter_nd_add  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
36
from ..fluid import layers
37
import paddle
38

W
Wilber 已提交
39
__all__ = [
40 41 42
    'cast',
    'concat',
    'expand',
L
lilong12 已提交
43
    'broadcast_to',
44 45 46 47 48 49 50 51 52 53 54 55
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
56
    'chunk',
57 58 59 60 61 62 63 64 65 66 67
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unique_with_counts',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
68
    'tile',
W
Wilber 已提交
69 70 71
]


72 73 74
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
75
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
76 77 78 79

    This OP concatenates the input along the axis.

    Args:
80 81
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
82 83 84 85
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
86 87 88 89 90
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
91
        Tensor: A Tensor with the same data type as ``x``.
92 93 94 95 96 97

    Examples:
        .. code-block:: python
            
            import paddle
            
98
            paddle.disable_static()  # Now we are in imperative mode
99 100 101 102 103 104
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
105 106 107
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
108 109 110
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
111 112 113 114 115 116 117 118 119
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
120
    check_type(x, 'x', (list, tuple), 'concat')
121 122 123
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
124
def flip(x, axis, name=None):
W
Wilber 已提交
125
    """
126 127
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
128

W
Wilber 已提交
129

Y
yaoxuefeng 已提交
130
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
131 132

    Args:
Y
yaoxuefeng 已提交
133
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
134
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
135
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
136 137 138 139
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
140
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
141 142 143 144 145 146

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
147

148
          paddle.disable_static()
Y
yaoxuefeng 已提交
149 150 151 152

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
153
          img = paddle.to_tensor(x)
Y
yaoxuefeng 已提交
154 155 156
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
157 158
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
159 160
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
161 162 163
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
164
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
165 166 167 168 169 170 171
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
172
        inputs={"X": x},
W
Wilber 已提交
173
        outputs={"Out": out},
Y
yaoxuefeng 已提交
174
        attrs={"axis": axis})
W
Wilber 已提交
175
    return out
176 177


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of number of dimentions >= axis. A tensor with data type float32,
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
        Variable: A tensor with the contents of the input tensor, with input \
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
        ValueError: If x is not a Variable.
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

236
            paddle.disable_static()
237 238 239 240 241

            image_shape=(2, 3, 4, 4)
            x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100.
            x = x.astype('float32')
            
242
            img = paddle.to_tensor(x)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
286
def roll(x, shifts, axis=None, name=None):
287
    """
288 289
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
290

Y
yaoxuefeng 已提交
291 292 293
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
294 295 296
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
297
        x (Variable): The x tensor variable as input.
298
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
299 300
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
301 302

    Returns:
Y
yaoxuefeng 已提交
303
        Variable: A Tensor with same data type as `x`.
304 305 306 307 308 309

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid

310
            paddle.disable_static()
311 312 313
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
314 315 316 317 318 319 320 321 322 323
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
324 325
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
326
    origin_shape = x.shape
327 328
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
342 343 344
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
345 346 347 348
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
349 350
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
351
    out = helper.create_variable_for_type_inference(x.dtype)
352

Y
yaoxuefeng 已提交
353 354 355
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
356 357 358

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
359
        inputs={'X': x},
360
        outputs={'Out': out},
Y
yaoxuefeng 已提交
361
        attrs={'axis': axis,
362
               'shifts': shifts})
363
    out = layers.reshape(out, shape=origin_shape)
364
    return out
365 366


L
Leo Chen 已提交
367
def stack(x, axis=0, name=None):
368
    """
369
	:alias_main: paddle.stack
L
Leo Chen 已提交
370
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
371

L
Leo Chen 已提交
372 373 374 375 376 377 378
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
414
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
415 416 417 418 419 420 421 422

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
423
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
424
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
425 426 427 428 429
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
430
    Returns:
L
Leo Chen 已提交
431
        Tensor: The stacked tensor with same data type as input.
432 433 434

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
435

436
            import paddle
437
            
438
            paddle.disable_static()
L
Leo Chen 已提交
439 440 441
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Leo Chen 已提交
442 443 444 445 446 447 448 449
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
450 451


452
def split(x, num_or_sections, axis=0, name=None):
453 454
    """
    Split the input tensor into multiple sub-Tensors.
455
    
456
    Args:
457 458 459 460 461 462 463 464 465 466 467
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
468
    Returns:
469
        list(Tensor): The list of segmented Tensors.
470
    
471 472
    Example:
        .. code-block:: python
473
            
474 475 476
            import numpy as np
            import paddle
            
477
            paddle.disable_static()
478 479
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
W
wangchaochaohu 已提交
480
            x = paddle.to_tensor(x_np)
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
503
    """
504 505
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
506 507


L
Leo Chen 已提交
508
def squeeze(x, axis=None, name=None):
509
    """
510
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
511
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
512

L
Leo Chen 已提交
513
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
514

L
Leo Chen 已提交
515 516 517
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
518 519 520 521 522 523

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
524 525
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
526
          Output:
L
Leo Chen 已提交
527
            out.shape = [3, 5]
528 529 530 531

        Case2:

          Input:
L
Leo Chen 已提交
532 533 534 535 536 537 538 539 540 541
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
542
          Output:
L
Leo Chen 已提交
543
            out.shape = [3, 5]
544

L
Leo Chen 已提交
545
        Case4:
546 547

          Input:
L
Leo Chen 已提交
548 549
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
550
          Output:
L
Leo Chen 已提交
551
            out.shape = [1, 3, 5]
552 553

    Args:
554
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
555
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
556 557 558
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
559 560 561
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
562
        Tensor: Squeezed Tensor with the same data type as input Tensor.
563 564 565

    Examples:
        .. code-block:: python
566

567 568
            import paddle

569
            paddle.disable_static()
L
Leo Chen 已提交
570 571 572 573
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
574 575

    """
L
Leo Chen 已提交
576 577 578 579 580 581
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
582

L
Leo Chen 已提交
583
    return layers.squeeze(x, axis, name)
584 585


Z
Zhang Ting 已提交
586 587 588 589 590
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
591
           dtype="int64",
Z
Zhang Ting 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604
           name=None):
    """
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
605 606
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()
621
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
622 623 624 625 626 627 628
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

629
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
630 631 632 633 634 635 636 637 638 639 640 641
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
642
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
643 644
    if in_dygraph_mode():
        out, inverse, indices, counts = core.ops.unique(
Z
Zhang Ting 已提交
645
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
666
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
667 668 669 670 671
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
672
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
673 674 675 676 677 678 679 680 681
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
682
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
683 684 685 686
    outputs = {"Out": out, "Index": inverse}
    outs = [out]
    if return_index:
        indices = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
687
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
688 689 690 691 692 693
        outputs["Indices"] = indices
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        counts = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
694
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
695 696 697 698 699 700 701 702 703 704 705 706
        outputs["Counts"] = counts
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


707
def unsqueeze(x, axis, name=None):
708
    """
709
	:alias_main: paddle.unsqueeze
710
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
711

712 713 714
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
715 716

    Args:
717 718 719 720 721 722
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
723 724

    Returns:
725
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
726 727 728

    Examples:
        .. code-block:: python
729

730 731
            import paddle

732
            paddle.disable_static()
733 734 735 736 737 738 739 740
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
741

742 743 744 745
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
746 747
    """

748
    return layers.unsqueeze(x, axis, name)
749 750


751
def gather(x, index, axis=None, name=None):
752
    """
S
swtkiwi 已提交
753

754 755
    **Gather Layer**

756 757
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
758 759 760 761 762 763

    .. code-block:: text


                Given:

764
                x = [[1, 2],
765 766 767
                     [3, 4],
                     [5, 6]]

768 769
                index = [1, 2]
                axis=[0]
770 771 772

                Then:

773
                out = [[3, 4],
774 775
                       [5, 6]]
    Args:
776
        x (Tensor): The source input tensor with rank>=1. Supported data type is
777 778
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
779
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
780
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
781 782
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
783 784

    Returns:
785 786
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
787 788 789 790 791 792
    Examples:

        .. code-block:: python

            import paddle

793
            paddle.disable_static()
794 795
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
796 797
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
798
    """
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    if axis is None:
        axis = 0
    axis_tensor = axis
    if not isinstance(axis, Variable):
        axis_tensor = fill_constant(shape=[1], dtype='int64', value=axis)
    if in_dygraph_mode():
        return core.ops.gather(x, index, axis_tensor)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
    else:
        check_type(axis, 'axis', (int), 'gather')

816 817 818 819 820
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
821 822 823 824
        inputs={"X": x,
                "Index": index,
                "Axis": axis_tensor},
        outputs={"Out": out})
825
    return out
myq406450149's avatar
myq406450149 已提交
826 827 828 829


def unbind(input, axis=0):
    """
830 831
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
832

myq406450149's avatar
myq406450149 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
883 884


S
ShenLiang 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle
            paddle.disable_static()

933 934 935
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
        return core.ops.scatter(x, index, updates, 'overwrite', overwrite)

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


974 975 976 977 978 979 980 981 982 983 984 985 986 987
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
988
    
989 990 991 992 993 994 995 996 997
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            paddle.disable_static()
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
998
            x = paddle.to_tensor(x_np)
999

1000
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1018 1019
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1020 1021

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1022
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1023 1024 1025

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1026
    Args:
L
lilong12 已提交
1027 1028 1029 1030 1031
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1032
    Returns:
L
lilong12 已提交
1033 1034
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1035 1036
    Examples:
        .. code-block:: python
L
lilong12 已提交
1037

L
lilong12 已提交
1038
            import paddle
L
lilong12 已提交
1039

L
lilong12 已提交
1040
            paddle.disable_static()
1041
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1042
            out = paddle.tile(data, repeat_times=[2, 1])
1043
            np_out = out.numpy()
L
lilong12 已提交
1044
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1045 1046

            out = paddle.tile(data, repeat_times=[2, 2])
1047
            np_out = out.numpy()
L
lilong12 已提交
1048 1049
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

1050
            repeat_times = paddle.to_tensor([2, 1], dtype='int32')
L
lilong12 已提交
1051
            out = paddle.tile(data, repeat_times=repeat_times)
1052
            np_out = out.numpy()
L
lilong12 已提交
1053 1054
            # [[1, 2, 3], [1, 2, 3]]
    """
1055 1056
    if in_dygraph_mode():
        return core.ops.tile(x, 'repeat_times', repeat_times)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
                if six.PY3:
                    type_tuple = (int, np.int32, np.int64)
                elif six.PY2:
                    type_tuple = (int, long, np.int32, np.int64)
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
1073

L
lilong12 已提交
1074 1075
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
1076
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1077 1078
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1079
            "must set its stop_gradient to be True by "
1080 1081 1082
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1083

L
lilong12 已提交
1084 1085 1086
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1087 1088 1089 1090 1091 1092 1093 1094
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1095
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1096 1097 1098 1099 1100
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1101
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1113 1114


L
lilong12 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1124
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

1137 1138
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1139
            out = paddle.expand_as(data_x, data_y)
1140
            np_out = out.numpy()
L
lilong12 已提交
1141 1142
            # [[1, 2, 3], [1, 2, 3]]
    """
1143 1144 1145
    if in_dygraph_mode():
        return core.ops.expand_as_v2(x, y)

L
lilong12 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
    inputs = {"X": [x], "target_tensor": [y]}

1158
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1159 1160 1161 1162 1163 1164
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='expand_as_v2', inputs=inputs, outputs={'Out': out})
    return out


1165 1166 1167 1168 1169
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1170
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1171 1172 1173


    Args:
L
lilong12 已提交
1174 1175 1176 1177
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1178 1179 1180
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1181
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1182 1183 1184 1185 1186 1187

    Examples:
        .. code-block:: python

            import paddle

L
lilong12 已提交
1188
            paddle.disable_static()
1189
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1190
            out = paddle.expand(data, shape=[2, 3])
1191
            out = out.numpy()
1192 1193
            # [[1, 2, 3], [1, 2, 3]]
    """
1194 1195 1196
    if in_dygraph_mode():
        return core.ops.expand_v2(x, 'shape', shape)

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
                if six.PY3:
                    type_tuple = (int, np.int32, np.int64)
                elif six.PY2:
                    type_tuple = (int, long, np.int32, np.int64)
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

1212 1213 1214
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1215
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1216 1217
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1218
                         "some_var.stop_gradient = True, supporting "
1219 1220
                         "some_var as the input.")

1221 1222 1223
    inputs = {"X": [x]}
    attrs = {}

1224
    helper = LayerHelper('expand', **locals())
1225 1226 1227 1228 1229 1230 1231 1232 1233

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1234
                    "All elements in shape of expand must be positive or -1.")
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1251 1252 1253


broadcast_to = expand
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305


def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

1306 1307 1308 1309 1310 1311 1312
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
1313 1314
            # the shape of out_2 is [4, 12].
            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
1315 1316 1317
            out = paddle.reshape(x, shape=shape_tensor)
            print(out)
            # the shape is [8, 6].
1318 1319
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340


def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1341 1342 1343 1344 1345 1346 1347
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1348 1349 1350 1351

            * Case 1:
                index = [[1]]

1352 1353
                gather_nd(x, index)
                         = [x[1, :, :]]
1354 1355 1356 1357 1358 1359 1360
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1361 1362
                gather_nd(x, index)
                         = [x[0, 2, :]]
1363 1364 1365 1366 1367
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1368 1369
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
1385
            
1386 1387 1388
            import paddle
            
            paddle.disable_static()
1389 1390 1391
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
1392 1393 1394 1395 1396 1397
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)