manipulation.py 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core, reshape
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25 26 27 28 29 30 31 32 33 34 35 36
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import expand  #DEFINE_ALIAS
from ..fluid.layers import expand_as  #DEFINE_ALIAS
from ..fluid.layers import flatten  #DEFINE_ALIAS
from ..fluid.layers import reshape  #DEFINE_ALIAS
from ..fluid.layers import scatter  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unique  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

37 38 39 40 41
from ..fluid.layers import gather_nd  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd_add  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
42
from ..fluid import layers
43
import paddle
44

W
Wilber 已提交
45
__all__ = [
46 47 48 49 50
    'cast', 'concat', 'expand', 'expand_as', 'flatten', 'gather', 'gather_nd',
    'reshape', 'reverse', 'scatter', 'scatter_nd_add', 'scatter_nd',
    'shard_index', 'slice', 'split', 'squeeze', 'stack', 'strided_slice',
    'transpose', 'unique', 'unique_with_counts', 'unsqueeze', 'unstack', 'flip',
    'unbind', 'roll'
W
Wilber 已提交
51 52 53
]


54 55 56
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
57
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
58 59 60 61

    This OP concatenates the input along the axis.

    Args:
62 63
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
64 65 66 67
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
68 69 70 71
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Raises:
72 73
        TypeError: ``x`` must be list or tuple.
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32 and int64. 
74
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
75 76 77
        TypeError: All the Tensors in ``x`` must have the same data type.

    Returns:
78
        Tensor: A Tensor with the same data type as ``x``.
79 80 81 82 83 84 85 86

    Examples:
        .. code-block:: python
            
            import paddle
            import numpy as np
            
            paddle.enable_imperative()  # Now we are in imperative mode
87 88 89 90 91 92
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
93 94 95 96 97 98
            x1 = paddle.imperative.to_variable(in1)
            x2 = paddle.imperative.to_variable(in2)
            x3 = paddle.imperative.to_variable(in3)
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
99 100 101
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
102 103 104 105 106 107 108 109 110
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
111
    check_type(x, 'x', (list, tuple), 'concat')
112 113 114
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
115
def flip(x, axis, name=None):
W
Wilber 已提交
116
    """
117 118
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
119

W
Wilber 已提交
120

Y
yaoxuefeng 已提交
121
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
122 123

    Args:
Y
yaoxuefeng 已提交
124
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
125
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
126
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
127 128 129 130
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
131
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
132 133 134 135 136 137

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
138 139 140 141 142 143 144 145 146 147

          paddle.enable_imperative()

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
          img = paddle.imperative.to_variable(x)
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
148 149
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
150 151
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
152 153 154
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
155
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
156 157 158 159 160 161 162
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
163
        inputs={"X": x},
W
Wilber 已提交
164
        outputs={"Out": out},
Y
yaoxuefeng 已提交
165
        attrs={"axis": axis})
W
Wilber 已提交
166
    return out
167 168


Y
yaoxuefeng 已提交
169 170 171
reverse = flip  #DEFINE_ALIAS


Y
yaoxuefeng 已提交
172
def roll(x, shifts, axis=None, name=None):
173
    """
174 175
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
176

Y
yaoxuefeng 已提交
177 178 179
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
180 181 182
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
183
        x (Variable): The x tensor variable as input.
184
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
185 186
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
187 188

    Returns:
Y
yaoxuefeng 已提交
189
        Variable: A Tensor with same data type as `x`.
190 191 192 193 194 195 196 197 198 199

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data = np.array([[1.0, 2.0, 3.0],
                             [4.0, 5.0, 6.0],
                             [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
200 201 202 203 204 205 206 207 208 209 210 211
            paddle.enable_imperative()
            x = paddle.imperative.to_variable(data)
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
212 213
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
214
    origin_shape = x.shape
215 216
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
230 231 232
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
233 234 235 236
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
237 238
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
239
    out = helper.create_variable_for_type_inference(x.dtype)
240

Y
yaoxuefeng 已提交
241 242 243
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
244 245 246

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
247
        inputs={'X': x},
248
        outputs={'Out': out},
Y
yaoxuefeng 已提交
249
        attrs={'axis': axis,
250 251 252
               'shifts': shifts})
    out = reshape(out, shape=origin_shape, inplace=True)
    return out
253 254 255 256


def stack(x, axis=0, out=None, name=None):
    """
257 258
	:alias_main: paddle.stack
	:alias: paddle.stack,paddle.tensor.stack,paddle.tensor.manipulation.stack
S
swtkiwi 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

    This OP stacks all the inputs :code:`x` along axis.

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:


          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.

    Returns:
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.

    Example:    
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data1 = np.array([[1.0, 2.0]])
            data2 = np.array([[3.0, 4.0]])
            data3 = np.array([[5.0, 6.0]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(data1)
                x2 = fluid.dygraph.to_variable(data2)
                x3 = fluid.dygraph.to_variable(data3)
                result = paddle.stack([x1, x2, x3], axis=0)
                # result shape: [3, 1, 2]
                # result value: [[[1.0, 2.0]],
                #                [[3.0, 4.0]],
                #                [[5.0, 6.0]]]
    """

    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
    out = helper.create_variable_for_type_inference(x[0].dtype)
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})

    return out


368
def split(x, num_or_sections, axis=0, name=None):
369
    """
370
	:alias_main: paddle.split
371 372
        :alias: paddle.tensor.split, paddle.tensor.manipulation.split
    
373
    Split the input tensor into multiple sub-Tensors.
374
    
375
    Args:
376 377 378 379 380 381 382 383 384 385 386
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
387
    Returns:
388
        list(Tensor): The list of segmented Tensors.
389
    Raises:
390 391 392
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``num_or_sections`` is not int, list or tuple.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
393 394
    Example:
        .. code-block:: python
395
            
396 397 398
            import numpy as np
            import paddle
            
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
            paddle.enable_imperative()
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
            x = paddle.imperative.to_variable(x_np)

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
425
    """
426 427
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
428 429


L
Leo Chen 已提交
430
def squeeze(x, axis=None, name=None):
431
    """
432
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
433
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
434

L
Leo Chen 已提交
435
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
436

L
Leo Chen 已提交
437 438 439
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
440 441 442 443 444 445

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
446 447
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
448
          Output:
L
Leo Chen 已提交
449
            out.shape = [3, 5]
450 451 452 453

        Case2:

          Input:
L
Leo Chen 已提交
454 455 456 457 458 459 460 461 462 463
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
464
          Output:
L
Leo Chen 已提交
465
            out.shape = [3, 5]
466

L
Leo Chen 已提交
467
        Case4:
468 469

          Input:
L
Leo Chen 已提交
470 471
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
472
          Output:
L
Leo Chen 已提交
473
            out.shape = [1, 3, 5]
474 475

    Args:
L
Leo Chen 已提交
476 477 478 479 480
        input (Tensor): The input Tensor. Support data type: float32, float64, int8, int32, int64.
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
                          The range of axis is :math:`[-ndim(input), ndim(input))`.
                          If axis is negative, :math:`axis = axis + ndim(input)`.
                          If axis is None, all the dimensions of input of size 1 will be removed.
481 482 483
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Leo Chen 已提交
484
        Tensor: Output squeezed Tensor. Data type is same as input Tensor.
485 486 487 488 489

    Examples:
        .. code-block:: python
            import paddle

L
Leo Chen 已提交
490 491 492 493 494
            paddle.enable_imperative()
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
495 496

    """
L
Leo Chen 已提交
497 498 499 500 501 502
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
503

L
Leo Chen 已提交
504
    return layers.squeeze(x, axis, name)
505 506 507 508


def unsqueeze(input, axes, out=None, name=None):
    """
509 510
	:alias_main: paddle.unsqueeze
	:alias: paddle.unsqueeze,paddle.tensor.unsqueeze,paddle.tensor.manipulation.unsqueeze
S
swtkiwi 已提交
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    Insert single-dimensional entries to the shape of a Tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:

    .. code-block:: text

      Given a tensor such that tensor with shape [3, 4, 5],
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].

    Args:
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
        name (str|None): Name for this layer.

    Returns:
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            with fluid.dygraph.guard():
                input_1 = np.random.random([5, 10]).astype("int32")
                # input is a variable which shape is [5, 10]
                input = fluid.dygraph.to_variable(input_1)

                output = paddle.unsqueeze(input, axes=[1])
                # output.shape [5, 1, 10]
    """
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        contain_var = not all(not isinstance(ele, Variable) for ele in axes)
        if contain_var:
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out,
                 "XShape": x_shape})

    return out


def gather(input, index, overwrite=True):
    """
592 593
	:alias_main: paddle.gather
	:alias: paddle.gather,paddle.tensor.gather,paddle.tensor.manipulation.gather
S
swtkiwi 已提交
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    **Gather Layer**

    Output is obtained by gathering entries of the outer-most dimension
    of X indexed by `index` and concatenate them together.

    .. math::

        Out = X[Index]


    .. code-block:: text


                Given:

                X = [[1, 2],
                     [3, 4],
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]
    Args:
        input (Variable): The source input tensor with rank>=1. Supported data type is
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
            if False, use the accumulate mode to update the grad of the same index.
            Default value is True.



    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid


            with fluid.dygraph.guard():
                input_1 = np.array([[1,2],[3,4],[5,6]])
                index_1 = np.array([0,1])
                input = fluid.dygraph.to_variable(input_1)
                index = fluid.dygraph.to_variable(index_1)
                output = paddle.gather(input, index)
                # expected output: [[1,2],[3,4]]
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
    return out
myq406450149's avatar
myq406450149 已提交
662 663 664 665


def unbind(input, axis=0):
    """
666 667
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
668

myq406450149's avatar
myq406450149 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs