creation.py 43.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16 17
import numpy as np

L
Li Fuchen 已提交
18
from ..fluid.framework import Variable
19 20 21
from ..fluid.framework import unique_name
from ..fluid.framework import _current_expected_place
from ..fluid.framework import dygraph_only
P
Pei Yang 已提交
22 23 24 25 26
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
27
from paddle.common_ops_import import *
W
wangchaochaohu 已提交
28

29
# TODO: define functions to get create a tensor  
30
from ..fluid.layers import linspace  #DEFINE_ALIAS
31
import paddle
32

W
wangchaochaohu 已提交
33
__all__ = [
34
    'to_tensor',
35 36
    'diag',
    #       'get_tensor_from_selected_rows',
37
    'linspace',
38 39 40 41
    'ones',
    'ones_like',
    'zeros',
    'zeros_like',
42
    'arange',
43
    'eye',
W
wangchaochaohu 已提交
44
    'full',
P
Pei Yang 已提交
45
    'full_like',
46
    'empty',
47
    'empty_like',
W
WuHaobo 已提交
48 49
    'triu',
    'tril',
50 51
    'meshgrid',
    'assign',
W
wangchaochaohu 已提交
52 53 54
]


55 56 57 58 59 60 61 62
@dygraph_only
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    """
    Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , 
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.

    If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy 
    will be performed and return origin tensor, otherwise a new tensor will be constructed
L
Leo Chen 已提交
63
    and returned. 
64 65 66 67 68 69 70

    The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then 
    ``x.real`` is the real part, and ``x.imag`` is the imaginary part.

    Args:
        data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor.
71
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
72
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And
73 74
            'complex64' , 'complex128' only for ComplexTensor. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
75 76 77 78 79
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place.
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
80
        Tensor: A Tensor or ComplexTensor constructed from ``data`` .
81 82 83 84 85

    Raises:
        TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor
        ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
86
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace
87 88 89 90 91 92 93 94 95 96 97

    Examples:

    .. code-block:: python

        import paddle
                
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
98 99
        # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #        [1])
100 101 102

        x = paddle.to_tensor(1)
        paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place
103 104
        # Tensor(shape=[1], dtype=int32, place=CPUPlace, stop_gradient=True,
        #        [1])
105 106

        paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace())
107 108
        # Tensor(shape=[1], dtype=float32, place=CUDAPinnedPlace, stop_gradient=True,
        #        [1])
109 110

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False)
111 112 113
        # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])
114

115
        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64')
116 117 118
        # <class 'paddle.ComplexTensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
119 120 121 122 123 124
        # ComplexTensor[real](shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #                     [[1., 2.],
        #                      [3., 4.]])
        # ComplexTensor[imag](shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
        #                     [[1., 0.],
        #                      [2., 0.]])
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    """

    if place is None:
        place = _current_expected_place()
    elif not isinstance(place,
                        (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )

    #Todo(zhouwei): Support allocate tensor on any other specified card
    if isinstance(place, core.CUDAPlace) and isinstance(
            _current_expected_place(), core.CUDAPlace) and place._get_device_id(
            ) != _current_expected_place()._get_device_id():
        place = _current_expected_place()

    if not isinstance(data, np.ndarray):
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
            if data.dtype == np.object:
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
        elif isinstance(data, paddle.Tensor):
            data.stop_gradient = stop_gradient
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data
        elif isinstance(data, paddle.ComplexTensor):
            return data
        else:
            raise TypeError(
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor".
                format(type(data)))
165 166 167 168 169 170 171 172 173 174 175 176
        if not dtype and data.dtype in [
                'float16', 'float32', 'float64', 'complex64', 'complex128'
        ]:
            default_type = paddle.get_default_dtype()
            if np.iscomplexobj(data):
                default_type = 'complex64' if default_type in [
                    'float16', 'float32'
                ] else 'complex128'
            data = data.astype(default_type)

    if dtype and convert_dtype(dtype) != data.dtype:
        data = data.astype(dtype)
177 178

    if not np.iscomplexobj(data):
179
        if dtype and convert_dtype(dtype) != data.dtype:
180
            data = data.astype(dtype)
181 182 183 184
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
L
Leo Chen 已提交
185
            zero_copy=False,
186 187 188 189 190 191
            stop_gradient=stop_gradient)
    else:
        name = unique_name.generate('generated_tensor')
        real_tensor = paddle.Tensor(
            value=data.real,
            place=place,
L
Leo Chen 已提交
192
            zero_copy=False,
193 194 195 196 197
            name=name + ".real",
            stop_gradient=stop_gradient)
        imag_tensor = paddle.Tensor(
            value=data.imag,
            place=place,
L
Leo Chen 已提交
198
            zero_copy=False,
199 200 201 202 203
            name=name + ".imag",
            stop_gradient=stop_gradient)
        return paddle.ComplexTensor(real_tensor, imag_tensor)


204
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
205
    """
S
swtkiwi 已提交
206

207 208
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
209

P
Pei Yang 已提交
210
    Args:
211 212
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
213
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
214 215
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
216 217
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
P
Pei Yang 已提交
218
    Returns:
219
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
220
    
P
Pei Yang 已提交
221 222
    Examples:
        .. code-block:: python
223

P
Pei Yang 已提交
224 225
          import paddle
          import numpy as np
226 227
          
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
228
          output = paddle.full_like(input, 2.0)
229 230
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
231 232 233
    """

    if dtype is None:
234
        dtype = x.dtype
235
    else:
236 237 238 239 240
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
P
Pei Yang 已提交
241

242
    helper = LayerHelper("full_like", **locals())
243 244 245
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'full_like')
246 247
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
248
                'full_like/zeros_like/ones_like')
249
    out = helper.create_variable_for_type_inference(dtype=dtype)
250

P
Pei Yang 已提交
251 252
    helper.append_op(
        type='fill_any_like',
253
        inputs={'X': [x]},
254
        attrs={'value': fill_value,
255
               "dtype": dtype},
P
Pei Yang 已提交
256
        outputs={'Out': [out]})
257
    out.stop_gradient = True
P
Pei Yang 已提交
258 259 260
    return out


261
def ones(shape, dtype=None, name=None):
262
    """
S
swtkiwi 已提交
263

264 265 266
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.

    Args:
267
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
268
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
269 270 271
            bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
272
    Returns:
273
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
274 275 276 277

    Examples:
        .. code-block:: python

278 279
          import paddle 
          
280
          # default dtype for ones OP
281 282 283 284 285 286 287 288 289
          data1 = paddle.ones(shape=[3, 2]) 
          # [[1. 1.]
          #  [1. 1.]
          #  [1. 1.]]
          
          data2 = paddle.ones(shape=[2, 2], dtype='int32') 
          # [[1 1]
          #  [1 1]]
          
290
          # shape is a Tensor
291
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
292 293 294
          data3 = paddle.ones(shape=shape, dtype='int32') 
          # [[1 1]
          #  [1 1]]
295
    """
296 297 298
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
299 300


301
def ones_like(x, dtype=None, name=None):
302
    """
303
	:alias_main: paddle.ones_like
304
	:alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like
S
swtkiwi 已提交
305

306 307
    This OP returns a Tensor filled with the value 1, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
308 309

    Args:
310 311 312 313 314 315 316 317 318 319
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

320
    Returns:
321 322 323 324 325 326
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

    Raise:
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
327 328 329 330

    Examples:
        .. code-block:: python

331
            import paddle
332

333
            paddle.disable_static()
334

335
            x = paddle.to_tensor([1,2,3])
336 337
            out1 = paddle.zeros_like(x) # [1., 1., 1.]
            out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
338

339 340
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
341 342


343
def zeros(shape, dtype=None, name=None):
344 345 346 347
    """
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.

    Args:
348
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
349
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
350 351 352
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
353 354

    Returns:
355
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
356 357 358 359 360

    Examples:
        .. code-block:: python

          import paddle
361
          
362 363 364 365 366 367 368 369 370
          data = paddle.zeros(shape=[3, 2], dtype='float32') 
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
          data = paddle.zeros(shape=[2, 2]) 
          # [[0. 0.]
          #  [0. 0.]]
          
          # shape is a Tensor
371
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
372
          data3 = paddle.zeros(shape=shape, dtype='int32') 
373 374
          # [[0 0]
          #  [0 0]]
375
    """
376 377 378
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
379 380


381
def zeros_like(x, dtype=None, name=None):
382
    """
383
	:alias_main: paddle.zeros_like
384
	:alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
S
swtkiwi 已提交
385

386 387
    This OP returns a Tensor filled with the value 0, with the same shape and
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
388 389

    Args:
390 391 392 393 394 395
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
396 397 398
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
399 400

    Returns:
401 402
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
403

404
    Raise:
405 406
        TypeError: If ``dtype`` is not None and is not bool, float16, float32,
            float64, int32 or int64.
407

408 409 410
    Examples:
        .. code-block:: python

411
            import paddle
412

413
            paddle.disable_static()
414

415
            x = paddle.to_tensor([1,2,3])
416 417
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
418

419 420
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
421 422


423
def eye(num_rows, num_columns=None, dtype=None, name=None):
424
    """
425
    
426
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
427

428
    Args:
429 430
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
431
            If None, default: num_rows.
W
wangchaochaohu 已提交
432
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
433 434
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
435 436
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
437

438
    Returns:
439
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
440

441 442
    Examples:
        .. code-block:: python
443
          
444
          import paddle
445

446
          data = paddle.eye(3, dtype='int32')
447 448 449
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
450
          data = paddle.eye(2, 3, dtype='int32')
451 452
          # [[1 0 0]
          #  [0 1 0]]
453 454
    """

455 456 457
    if dtype is None:
        dtype = 'float32'
    if num_columns is None:
458
        num_columns = num_rows
459 460 461 462 463
    return paddle.fluid.layers.eye(num_rows=num_rows,
                                   num_columns=num_columns,
                                   batch_shape=None,
                                   dtype=dtype,
                                   name=name)
464 465


466
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
467
    """
S
swtkiwi 已提交
468

469
    This Op return a Tensor with the ``fill_value`` which size is same as ``shape``.
W
wangchaochaohu 已提交
470 471
    
    Args:
472
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
473 474
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
475 476 477
                If ``shape`` is an Tensor, it should be an 1-D Tensor .
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
478
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
479
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
480
            type of created Tensor is `float32`
W
wangchaochaohu 已提交
481 482 483
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
    
484
    Returns:
485
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
486

W
wangchaochaohu 已提交
487 488 489
    Examples:
        .. code-block:: python

490
          import paddle
W
wangchaochaohu 已提交
491

492 493 494
          data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') 
          #[[0]
          # [0]]
W
wangchaochaohu 已提交
495

496
          # attr shape is a list which contains Tensor.
497
          positive_2 = paddle.full([1], 2, "int32")
498 499
          data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
          # [[1.5 1.5]]
W
wangchaochaohu 已提交
500

501
          # attr shape is a Tensor.
502
          shape = paddle.full([2], 2, "int32")
503 504 505
          data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) 
          # [[True True] 
          #  [True True]]
506
          
507
          # attr fill_value is a Tensor.
508
          val = paddle.full([1], 2.0, "float32")
509 510 511
          data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
          # [[2.0] 
          #  [2.0]]
W
wangchaochaohu 已提交
512 513 514 515 516
    """

    if dtype is None:
        dtype = 'float32'

517
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
518 519


520
def arange(start=0, end=None, step=1, dtype=None, name=None):
521
    """
522
	:alias_main: paddle.arange
523
	:alias: paddle.tensor.arange, paddle.tensor.creation.arange
S
swtkiwi 已提交
524

525
    This OP returns a 1-D Tensor with spaced values within a given interval.
526

527 528
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
529

530 531
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
532 533

    Parameters:
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
552

553 554 555 556
    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.
557

558
    Raises:
559
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
560

561 562 563 564
    examples:

        .. code-block:: python

565
        import paddle
566

567
        paddle.disable_static()
568

569 570
        out1 = paddle.arange(5)
        # [0, 1, 2, 3, 4]
571

572 573
        out2 = paddle.arange(3, 9, 2.0)
        # [3, 5, 7]
574

575 576 577
        # use 4.999 instead of 5.0 to avoid floating point rounding errors
        out3 = paddle.arange(4.999, dtype='float32')
        # [0., 1., 2., 3., 4.]
578

579
        start_var = paddle.to_tensor([3])
580 581 582 583 584 585 586 587 588
        out4 = paddle.arange(start_var, 7)
        # [3, 4, 5, 6]
             
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
589

590
    return paddle.fluid.layers.range(start, end, step, dtype, name)
W
WuHaobo 已提交
591 592 593 594 595 596


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
597
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
598 599 600 601 602

    assert x is not None, 'x cannot be None in {}'.format(op_type)
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
603
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
        outputs={"Out": out}, )

    return out


Y
yaoxuefeng 已提交
627
def tril(x, diagonal=0, name=None):
W
WuHaobo 已提交
628
    """
629 630
	:alias_main: paddle.tril
	:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
S
swtkiwi 已提交
631

W
WuHaobo 已提交
632
    This op returns the lower triangular part of a matrix (2-D tensor) or batch
Y
yaoxuefeng 已提交
633
    of matrices :attr:`x`, the other elements of the result tensor are set 
W
WuHaobo 已提交
634 635 636 637
    to 0. The lower triangular part of the matrix is defined as the elements 
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
638
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
639 640 641 642 643 644 645 646 647 648 649 650
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
651 652
        Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
653 654 655

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
656
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
657 658 659 660 661

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
662
            import paddle
W
WuHaobo 已提交
663 664 665 666 667 668

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

669
            paddle.disable_static()
Y
yaoxuefeng 已提交
670

671
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
672 673
            
            tril1 = paddle.tensor.tril(x)
W
WuHaobo 已提交
674 675 676 677 678
            # array([[ 1,  0,  0,  0],
            #        [ 5,  6,  0,  0],
            #        [ 9, 10, 11,  0]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
679
            tril2 = paddle.tensor.tril(x, diagonal=2)
W
WuHaobo 已提交
680 681 682 683 684
            # array([[ 1,  2,  3,  0], 
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
685
            tril3 = paddle.tensor.tril(x, diagonal=-1)
W
WuHaobo 已提交
686 687 688 689
            # array([[ 0,  0,  0,  0],
            #        [ 5,  0,  0,  0],
            #        [ 9, 10,  0,  0]])

690 691 692
    """
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
693
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
694 695 696 697

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
698
def triu(x, diagonal=0, name=None):
W
WuHaobo 已提交
699
    """
700 701
	:alias_main: paddle.triu
	:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
S
swtkiwi 已提交
702

W
WuHaobo 已提交
703
    This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
704
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
705 706 707 708
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
709
        x (Variable): The input variable x which is a Tensor.
W
WuHaobo 已提交
710 711 712 713 714 715 716 717 718 719 720 721
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
Y
yaoxuefeng 已提交
722 723
        Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x,
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
724 725 726

    Raises:
        TypeError: diagonal is not a int type.
Y
yaoxuefeng 已提交
727
        ValueError: dimension of :attr:`x` is less than 2.
W
WuHaobo 已提交
728 729 730 731 732

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
733
            import paddle
W
WuHaobo 已提交
734 735 736 737 738

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
739

740
            paddle.disable_static()
W
WuHaobo 已提交
741 742

            # example 1, default diagonal
743
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
744
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
745 746 747 748 749
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
750
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
751 752 753 754 755
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
756
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
757 758 759 760 761
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
762 763
    if in_dygraph_mode():
        op = getattr(core.ops, 'tril_triu')
Y
yaoxuefeng 已提交
764
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
765 766

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
767 768


769
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
770
    """
771 772
	:alias_main: paddle.meshgrid
	:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
S
swtkiwi 已提交
773

774
    This op takes a list of N tensors as input *args, each of which is 1-dimensional 
S
suytingwan 已提交
775 776 777
    vector, and creates N-dimensional grids.
    
    Args:
Y
yaoxuefeng 已提交
778
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), 
S
suytingwan 已提交
779
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
780 781
        **kwargs (optional): Currently, we only accept name in **kwargs 
            The default value is None. Normally there is no need for
S
suytingwan 已提交
782 783 784
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
 
    Returns:
Y
yaoxuefeng 已提交
785
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
786 787 788 789 790 791

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
792 793 794 795
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
796

Y
yaoxuefeng 已提交
797 798
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
799 800 801 802 803 804

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

805 806
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
S
suytingwan 已提交
807
    if in_dygraph_mode():
808 809
        num = len(args)
        out = core.ops.meshgrid(list(args), num)
S
suytingwan 已提交
810 811
        return out

812
    name = kwargs.get("name", None)
S
suytingwan 已提交
813 814
    helper = LayerHelper('meshgrid', **locals())

815 816
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
817

818
    for id, input_ in enumerate(args):
S
suytingwan 已提交
819 820 821 822
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

823
    num = len(args)
S
suytingwan 已提交
824
    out = [
825
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
826 827
        for i in range(num)
    ]
828 829
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
S
suytingwan 已提交
830 831

    return out
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907


def diag(x, offset=0, padding_value=0, name=None):
    """
    If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned.

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.diag(x)
          print(y.numpy())
          # [[1 0 0]
          #  [0 2 0]
          #  [0 0 3]]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [[0 1 0 0]
          #  [0 0 2 0]
          #  [0 0 0 3]
          #  [0 0 0 0]]

          y = paddle.diag(x, padding_value=6)
          print(y.numpy())
          # [[1 6 6]
          #  [6 2 6]
          #  [6 6 3]]

        .. code-block:: python

          import paddle

          paddle.disable_static()
          x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
          y = paddle.diag(x)
          print(y.numpy())
          # [1 5]

          y = paddle.diag(x, offset=1)
          print(y.numpy())
          # [2 6]

          y = paddle.diag(x, offset=-1)
          print(y.numpy())
          # [4]
    """
    if in_dygraph_mode():
        return core.ops.diag_v2(x, "offset", offset, "padding_value",
                                padding_value)

    check_type(x, 'x', (Variable), 'diag_v2')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diag_v2')
908 909 910 911 912 913 914
    check_type(offset, 'offset', (int), 'diag_v2')
    check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
    if len(x.shape) != 1 and len(x.shape) != 2:
        raise ValueError(
            "The dimension of input x must be either 1 or 2, but received {}".
            format(len(x.shape)))

915 916 917 918 919 920 921 922 923 924 925 926 927
    helper = LayerHelper("diag_v2", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diag_v2',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'offset': offset,
               'padding_value': padding_value})

    out.stop_gradient = True
    return out
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013


def empty(shape, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which size is same as ``shape``.
    
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          # example 1: argument ``shape`` is a list which doesn't contain Tensor.
          data1 = paddle.empty(shape=[2,3], dtype='float32')
          #[[4.3612203e+27 1.8176809e+31 1.3555911e-19]     # uninitialized
          # [1.1699684e-19 1.3563156e-19 3.6408321e-11]]    # uninitialized

          # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
          shape_data = np.array([2, 3]).astype('int32')
          shape = paddle.to_tensor(shape_data)
          data2 = paddle.empty(shape=shape, dtype='float32')
          #[[1.7192326e-37 4.8125365e-38 1.9866003e-36]     # uninitialized
          # [1.3284029e-40 7.1117408e-37 2.5353012e+30]]    # uninitialized

          # example 3: argument ``shape`` is a list which contains Tensor.
          dim2_data = np.array([3]).astype('int32')
          dim2 = paddle.to_tensor(dim2_data)
          data3 = paddle.empty(shape=[2, dim2], dtype='float32')
          #[[1.1024214e+24 7.0379409e+22 6.5737699e-34]     # uninitialized
          # [7.5563101e+31 7.7130405e+31 2.8020654e+20]]    # uninitialized
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        out = core.ops.empty('shape', shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty')

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079


def empty_like(x, dtype=None, name=None):
    """
    This Op returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
    
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output 
            data type is the same as input.
        name(str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

    if in_dygraph_mode():
        out = core.ops.empty('shape', x.shape, 'dtype',
                             convert_np_dtype_to_dtype_(dtype))
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like')

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True)
    out.stop_gradient = True
    return out
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153


def assign(x, output=None):
    """
 
 
    The OP copies the :attr:`x` to the :attr:`output`.
 
    Parameters:
        x (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float16, float32, float64, int32 and int64.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
 
    Returns:
        Tensor: A tensor with the same shape, data type and value as :attr:`x`.
 
    Examples:
        .. code-block:: python
 
          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('assign', **locals())
    check_type(x, 'x', (Variable, numpy.ndarray), 'assign')
    if isinstance(x, Variable):
        check_dtype(
            x.dtype, 'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign', inputs={'X': [x]}, outputs={'Out': [output]})
    elif isinstance(x, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(x.dtype)
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in x.flat]
        elif dtype == VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in x.flat]
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in x.flat]
        else:
            raise TypeError(
                "When the type of 'x' in assign is numpy.ndarray, "
                "the data type of 'x' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if x.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        if output is None:
            output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={'dtype': dtype,
                   'shape': list(x.shape),
                   value_name: values})

    return output