control_flow.py 143.7 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator, in_dygraph_mode
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
D
dzhwinter 已提交
32

Q
QI JUN 已提交
33
__all__ = [
W
Wu Yi 已提交
34
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
35
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
36
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
G
guofei 已提交
37 38
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case',
    'while_loop'
D
dzhwinter 已提交
39 40
]

Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
59 60 61 62
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='select_output',
        inputs={'X': input,
                'Mask': mask},
        outputs={'Out': outputs})
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
87 88 89 90 91 92
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

    input_dtype = inputs[0].dtype
    input_shape = inputs[0].shape
    input_type = inputs[0].type
93 94 95

    out = helper.create_variable(
        dtype=input_dtype, shape=input_shape, type=input_type)
96 97 98 99 100 101 102 103
    helper.append_op(
        type='select_input',
        inputs={'X': inputs,
                'Mask': mask},
        outputs={'Out': out})
    return out


104
def split_lod_tensor(input, mask, level=0):
105 106 107 108
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
109 110
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
111 112

    Args:
113
        input(Variable|tuple|list|None): The input tensor that contains complete
114
                                lod information needed to construct the output.
115
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
116
        level(int): The specific lod level to split.
117 118

    Returns:
Q
qiaolongfei 已提交
119 120 121 122
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
123 124 125 126

    Examples:
        .. code-block:: python

127
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
128
          x = fluid.layers.data(name='x', shape=[1])
129 130
          x.persistable = True

Q
qiaolongfei 已提交
131
          y = fluid.layers.data(name='y', shape=[1])
132 133
          y.persistable = True

Q
qiaolongfei 已提交
134
          out_true, out_false = fluid.layers.split_lod_tensor(
135
                input=x, mask=y, level=level)
136

137
    """
138 139 140 141
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
142
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
143 144
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
145 146 147 148 149 150 151 152 153 154 155 156
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


157
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
158 159 160 161 162
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
163 164 165
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
166 167

    Args:
168 169 170
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
171
                            lod information needed to construct the output.
172
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
173
        level(int): The specific lod level to merge.
174 175 176 177 178 179 180

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

181
          import paddle.fluid as fluid
182 183 184 185 186 187 188 189 190 191 192 193
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
194
    helper = LayerHelper('merge_lod_tensor', **locals())
195 196 197 198 199 200 201
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
202
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
203 204 205 206 207 208 209 210 211 212 213
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
214 215 216
def Print(input,
          first_n=-1,
          message=None,
217
          summarize=20,
Y
Yan Chunwei 已提交
218 219 220
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
221 222
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
223 224 225 226 227 228 229 230 231 232
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
233
        input (Variable): A Tensor to print.
234
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
235
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
236 237
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
238 239 240 241
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
242
        print_phase (str): Which phase to displace, including 'forward',
243 244 245
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
246 247

    Returns:
248
        Variable: Output tensor.
Y
Yan Chunwei 已提交
249

250 251 252 253
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
254

Y
Yan Chunwei 已提交
255 256
    Examples:
        .. code-block:: python
257 258 259
           
           import paddle.fluid as fluid
           
260 261 262 263 264 265
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
266

267 268 269
    Output at runtime:
        .. code-block:: bash 
           
270
           The content of input layer:     The place is:CPUPlace
271 272 273 274 275
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
Y
Yan Chunwei 已提交
276
    '''
277 278 279
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
280

281 282
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
283 284
    helper.append_op(
        type='print',
Y
yangyaming 已提交
285
        inputs={'In': input},
286
        outputs={'Out': output},
Y
Yan Chunwei 已提交
287 288 289 290 291 292 293 294
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
295
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
296
        })
297
    return output
Y
Yan Chunwei 已提交
298 299


Y
Yu Yang 已提交
300 301
class BlockGuard(object):
    """
302 303 304 305
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
306 307
    """

308 309
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
310
            raise TypeError("BlockGuard takes a program")
311
        self.main_program = main_program
Y
Yu Yang 已提交
312 313

    def __enter__(self):
W
Wu Yi 已提交
314
        self.main_program._create_block()
Y
Yu Yang 已提交
315 316

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
317
        self.main_program._rollback()
Y
Yu Yang 已提交
318 319 320 321 322
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
323 324 325 326 327
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
328 329
    """

Y
Yu Yang 已提交
330
    def __init__(self, rnn):
X
Xin Pan 已提交
331
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
332
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
333
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
334 335 336 337
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
338
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
339 340

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
341 342
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
343
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
344
        self.rnn._complete_op()
Y
Yang Yang 已提交
345 346
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
347 348 349 350


class StaticRNNMemoryLink(object):
    """
351 352 353 354
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
355 356 357 358 359 360 361 362 363


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
373 374 375
    """
    StaticRNN class.

376 377 378 379 380 381 382
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
383 384

    Examples:
385 386 387 388 389 390
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
391 392
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
393 394 395 396 397
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
398
            # transform batch size to dim 1
399 400 401 402
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
403
                # mark created x_emb as input, each step process a word
404
                word = rnn.step_input(x_emb)
405
                # create prev memory parameter, batch size comes from word
406 407
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
408 409 410
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
411
                rnn.step_output(hidden)
412
            # get StaticrNN final output
413
            result = rnn()
C
chengduo 已提交
414

415
    """
Y
Yu Yang 已提交
416 417 418 419
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

420
    def __init__(self, name=None):
421
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
422
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
423 424 425 426 427 428 429 430
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
431
        """
432 433
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
434
        """
Y
Yang Yang 已提交
435
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
436 437 438 439 440

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

441 442 443 444 445 446 447
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
448
        """
C
chengduo 已提交
449 450 451
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
452 453
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
454

455
        Args:
456
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
457 458
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
459 460 461 462 463 464 465
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
466 467

        Returns:
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
499 500
            .. code-block:: python

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

524
        """
Y
Yu Yang 已提交
525
        self._assert_in_rnn_block_('memory')
526 527 528 529 530 531
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
532
        if init is None:
533
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
534
                raise ValueError(
535
                    "if init is None, memory at least need shape and batch_ref")
536
            parent_block = self._parent_block()
537
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
538
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
539
            boot_var = parent_block.create_var(
540 541
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
542
                dtype=batch_ref.dtype,
543
                persistable=False)
Y
Yu Yang 已提交
544 545

            parent_block.append_op(
546 547
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
548 549 550
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
551
                    'shape': boot_var.shape,
F
fengjiayi 已提交
552
                    'dtype': boot_var.dtype,
553 554
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
555 556 557 558 559
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
560 561
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
562
                dtype=init.dtype,
Y
Yu Yang 已提交
563 564 565 566 567 568
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
569 570 571 572 573 574 575 576
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
606
        """
Y
Yu Yang 已提交
607
        self._assert_in_rnn_block_('step_input')
608
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
609
        if self.seq_len is None:
Y
Yu Yang 已提交
610
            self.seq_len = x.shape[0]
611
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
612 613 614
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
615
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
616 617 618 619
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
620 621 622 623 624 625 626 627
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
659
        """
Y
Yu Yang 已提交
660
        self._assert_in_rnn_block_('step_output')
661
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
662

X
Xin Pan 已提交
663
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
664 665 666 667
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
668
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
669

670
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
671 672
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
673
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
674 675 676 677

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
678 679 680 681
        """
        Mark the StaticRNN output variables.

        Args:
682
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
683 684 685

        Returns:
            None
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
717
        """
Y
Yu Yang 已提交
718 719 720 721
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
722
        """
723
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
724 725 726

        Args:
            mem(Variable): the memory variable.
727
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
728
                           var and mem should have same dims and data type.
C
chengduo 已提交
729 730 731

        Returns:
            None
732

C
chengduo 已提交
733
        """
734 735
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
736 737
        self.memories[mem.name].mem = var

738
    def _parent_block(self):
739
        prog = self.helper.main_program
Y
Yu Yang 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

755
    def _complete_op(self):
756 757
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
758
        parent_block = self._parent_block()
Y
Yu Yang 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
773 774 775
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
776 777 778 779 780 781 782 783
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

784
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
785 786 787 788 789 790 791

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
792
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
793 794 795
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
796
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
797 798
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
799 800
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
801 802
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
803 804
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
805 806 807 808
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
809
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
823
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
824 825
                'ex_states': pre_memories,
                'states': memories,
826
                'sub_block': rnn_block
Y
Yu Yang 已提交
827
            })
Y
Yu Yang 已提交
828 829


Y
Yang Yang(Tony) 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
845
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
846 847 848 849
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
850
    """
851
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
852

853 854 855 856
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

X
Xin Pan 已提交
857
    Args:
858
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
859
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
860
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
861 862 863

    Examples:
          .. code-block:: python
864 865
            
            import paddle.fluid as fluid
866 867 868 869 870
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
871

872
            cond = fluid.layers.less_than(x=i, y=loop_len)              
873
            while_op = fluid.layers.While(cond=cond)
874
            with while_op.block():  
875
                i = fluid.layers.increment(x=i, value=1, in_place=True)
876 877 878 879 880 881 882
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)      

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
            print(res) # [array([10])]           
X
Xin Pan 已提交
883 884
    """

Y
Yang Yang(Tony) 已提交
885 886 887 888
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
889
    def __init__(self, cond, is_test=False, name=None):
890
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
891 892 893 894
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
895
        if cond.dtype != core.VarDesc.VarType.BOOL:
896
            raise TypeError("condition should be a boolean variable")
Y
Yang Yang(Tony) 已提交
897
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
898 899 900
            raise TypeError(
                "condition expected shape as [], but given shape as {0}.".
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
901
        self.cond_var = cond
C
chengduo 已提交
902
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
903 904 905 906

    def block(self):
        return WhileGuard(self)

907
    def _complete(self):
Y
Yang Yang(Tony) 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
927 928 929
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
930 931 932 933 934 935 936

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
937 938 939 940
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
941 942 943 944
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
945 946
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
947 948


G
guofei 已提交
949
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
950 951 952 953
    """
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

    Args:
954 955 956 957 958
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
959
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
960 961 962 963
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
    
    Returns:
964
        A list or tuple of tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
965 966 967 968 969 970 971 972 973 974 975 976
    
    Returen type:
        list(Variable)|tuple(Variable).

    Raises:
        TypeError: If the type of ``cond`` is not callable.
        TypeError: If the type of ``body`` is not callable.
        TypeError: If the type of ``loop_vars`` is not list or tuple.
        TypeError: If the type of ``cond`` returns is not Variable.
        TypeError: If the type of ``cond`` returns is not a boolean variable.
        TypeError: If the shape of ``cond`` returns is not equals 1.
        ValueError: If the ``var_loops`` is empty.
977
        ValueError: If the length or type of ``body`` returns is not same as ``loop_vars``.
G
guofei 已提交
978 979 980 981 982 983 984

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

985 986
            def cond(i, ten):
                return i < ten
G
guofei 已提交
987

988 989 990
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
991 992 993 994 995 996

            main_program = fluid.default_main_program()
            startup_program = fluid.default_startup_program()
            with fluid.program_guard(main_program, startup_program):
                i = layers.fill_constant(shape=[1], dtype='int64', value=0)     # loop counter
                ten = layers.fill_constant(shape=[1], dtype='int64', value=10)  # loop length
997
                i, ten = layers.while_loop(cond, body, [i, ten])
G
guofei 已提交
998 999
                
                exe = fluid.Executor(fluid.CPUPlace())
1000
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
    if not isinstance(loop_vars, (list, tuple)):
        raise TypeError("loop_vars in while_loop should be a list or tuple")
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
    if not isinstance(pre_cond, Variable):
        raise TypeError("cond in while_loop should return a variable")
    if pre_cond.dtype != core.VarDesc.VarType.BOOL:
        raise TypeError("cond in while_loop should return a boolean variable")
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
            "the shape of the variable returned by cond should be [],"
            "but given shape as {0}.".format(list(pre_cond.shape)))

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    if in_dygraph_mode():
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
            loop_vars = output_vars
        return loop_vars

G
guofei 已提交
1038
    while_loop_block = While(pre_cond, is_test, name)
1039
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1040
    with while_loop_block.block():
1041 1042 1043 1044 1045 1046 1047 1048 1049
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1050 1051
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1052 1053 1054
        try:
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1055
            raise ValueError("body in while_loop should return the same arity "
1056 1057
                             "(length and structure) as loop_vars: {0}".format(
                                 e))
1058
        now_cond = cond(*output_vars)
1059
        map_structure(assign, output_vars, loop_vars)
G
guofei 已提交
1060 1061 1062 1063
        assign(now_cond, pre_cond)
    return loop_vars


1064
def lod_rank_table(x, level=0):
1065 1066
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1067 1068
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1069
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1070
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1071 1072
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1073 1074 1075 1076

        .. code-block:: text

            x is a LoDTensor:
1077 1078
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1079 1080
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1081 1082 1083
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1084

Y
yangyaming 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1094 1095 1096 1097

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1098 1099
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1100 1101 1102 1103 1104 1105 1106

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1107
            import paddle.fluid as fluid
Y
yangyaming 已提交
1108
            x = fluid.layers.data(name='x', shape=[10],
1109
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1110
            out = layers.lod_rank_table(x=x, level=0)
1111
    """
Y
Yu Yang 已提交
1112 1113 1114
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
1115
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
1116 1117 1118 1119 1120 1121
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1122 1123


Y
yuyang18 已提交
1124
@templatedoc()
1125
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1126 1127 1128 1129 1130 1131 1132 1133
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1134 1135

    Args:
Y
yuyang18 已提交
1136
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1137 1138

    Returns:
Y
yuyang18 已提交
1139
        ${out_comment}.
F
fengjiayi 已提交
1140 1141
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1142
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
1143 1144 1145 1146 1147 1148 1149
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


1150
def lod_tensor_to_array(x, table):
1151
    """
F
fengjiayi 已提交
1152 1153
    Convert a LoDTensor to a LoDTensorArray.

1154 1155 1156 1157 1158
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1159
    Users should not use it directly.
1160 1161

    Args:
F
fengjiayi 已提交
1162
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1163 1164
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1165
                                descending order. It is generally generated
F
fengjiayi 已提交
1166
                                by `layers.lod_rank_table()` API.
1167 1168

    Returns:
F
fengjiayi 已提交
1169
        Variable: The LoDTensorArray that has been converted from the input tensor.
1170 1171 1172 1173

    Examples:
        .. code-block:: python

1174
          import paddle.fluid as fluid
1175 1176 1177
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1178
    """
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1189 1190
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1191
        name=unique_name.generate("lod_tensor_to_array"),
1192
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1193
        dtype=x.dtype)
1194 1195 1196 1197 1198 1199 1200 1201
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


1202
def array_to_lod_tensor(x, table):
1203
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1204 1205

    Args:
1206
        x (Variable|list): The lod tensor array to be converted to a tensor.
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1218
          import paddle.fluid as fluid
1219 1220 1221 1222
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1223
    """
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1235
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1236
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1237 1238 1239 1240 1241 1242 1243 1244
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


1245
def increment(x, value=1.0, in_place=True):
1246
    """
1247 1248
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1249

1250
    Parameters:
T
tianshuo78520a 已提交
1251
        x (Variable): A tensor that must always contain only one element, its data type supports
1252 1253 1254
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1255 1256

    Returns:
1257
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1258 1259 1260 1261

    Examples:
        .. code-block:: python

1262
          import paddle.fluid as fluid
1263 1264
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1265
    """
1266 1267
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1268
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1269
    if not in_place:
X
Xin Pan 已提交
1270
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1271 1272
    else:
        out = x
Y
Yu Yang 已提交
1273 1274 1275
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1276
        outputs={'Out': [out]},
1277
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1278
    return out
Y
Yu Yang 已提交
1279 1280


1281
def array_write(x, i, array=None):
1282
    """
1283 1284 1285 1286
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1287 1288

    Args:
1289 1290 1291 1292 1293 1294 1295
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1296

1297
    Returns:
1298
        Variable: The input ``array`` after ``x`` is written into.
1299 1300

    Examples:
D
dzhwinter 已提交
1301
        .. code-block:: python
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1330
    """
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    if in_dygraph_mode():
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
        i = i.numpy()[0]
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1356 1357
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1358
    helper = LayerHelper('array_write', **locals())
1359 1360 1361 1362 1363 1364
    if array is not None:
        if not isinstance(
                array,
                Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1365 1366 1367 1368
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1369
            dtype=x.dtype)
Y
Yu Yang 已提交
1370 1371 1372 1373 1374 1375 1376 1377
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


1378
def create_array(dtype):
1379
    """
1380 1381 1382 1383
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1384 1385

    Args:
1386 1387
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1388 1389

    Returns:
1390
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1391 1392 1393 1394

    Examples:
        .. code-block:: python

1395
          import paddle.fluid as fluid
1396
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1397 1398

    """
1399 1400 1401
    if in_dygraph_mode():
        return []

Y
Yang Yang(Tony) 已提交
1402 1403 1404 1405 1406 1407 1408
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1409
@templatedoc()
1410
def less_than(x, y, force_cpu=None, cond=None):
1411
    """
Y
yuyang18 已提交
1412
    ${comment}
1413 1414

    Args:
Y
yuyang18 已提交
1415 1416 1417
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1418 1419 1420
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1421
        ${out_comment}.
1422 1423 1424 1425

    Examples:
        .. code-block:: python

1426
          import paddle.fluid as fluid
W
Wilber 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
          import numpy as np
  
          # Graph Organizing
          x = fluid.layers.data(name='x', shape=[2], dtype='float64')
          y = fluid.layers.data(name='y', shape=[2], dtype='float64')
          result = fluid.layers.less_than(x=x, y=y)
          # The comment lists another available method.
          # result = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0)
          # fluid.layers.less_than(x=x, y=y, cond=result)
  
          # Create an executor using CPU as example
          exe = fluid.Executor(fluid.CPUPlace())
  
          # Execute
          x_i = np.array([[1, 2], [3, 4]]).astype(np.float64)
          y_i = np.array([[2, 2], [1, 3]]).astype(np.float64)
          result_value, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[result])
          print(result_value) # [[True, False], [False, False]]
1445
    """
Y
Yang Yang(Tony) 已提交
1446 1447
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1448
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1449 1450
        cond.stop_gradient = True

Y
yuyang18 已提交
1451 1452 1453 1454
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

Y
Yang Yang(Tony) 已提交
1455
    helper.append_op(
J
JiayiFeng 已提交
1456 1457 1458 1459
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1460
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1461 1462 1463
    return cond


Z
zhoukunsheng 已提交
1464 1465 1466
@templatedoc()
def less_equal(x, y, cond=None):
    """
1467
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1468 1469

    Args:
1470 1471 1472 1473 1474
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \
            this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \
            and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1475 1476

    Returns:
1477
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1478 1479 1480 1481

    Examples:
        .. code-block:: python

1482
          import paddle.fluid as fluid
1483 1484 1485 1486 1487 1488
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
1509
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1510 1511

    Args:
1512 1513 1514 1515 1516
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \
            of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1517 1518

    Returns:
1519
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` .
Z
zhoukunsheng 已提交
1520 1521 1522 1523

    Examples:
        .. code-block:: python

1524
          import paddle.fluid as fluid
1525 1526 1527 1528 1529
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
1550
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1551 1552

    Args:
1553 1554 1555 1556 1557
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \
            type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1558 1559

    Returns:
1560
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1561 1562 1563 1564

    Examples:
        .. code-block:: python

1565
          import paddle.fluid as fluid
1566 1567 1568 1569 1570 1571
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1572

Z
zhoukunsheng 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1590
def equal(x, y, cond=None):
1591 1592 1593 1594
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1595 1596 1597 1598 1599
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
1600 1601

    Returns:
W
wangchaochaohu 已提交
1602 1603
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1604 1605 1606 1607

    Examples:
        .. code-block:: python

1608
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1609 1610 1611 1612 1613 1614 1615
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1616 1617 1618
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1619
        cond = helper.create_variable_for_type_inference(dtype='bool')
1620 1621 1622 1623 1624 1625 1626 1627
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1628 1629
def not_equal(x, y, cond=None):
    """
1630
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1631 1632

    Args:
1633 1634 1635 1636 1637
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
             tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \
             type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1638 1639

    Returns:
1640
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1641 1642 1643 1644

    Examples:
        .. code-block:: python

1645 1646 1647 1648
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1662
def array_read(array, i):
1663
    """
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1679

K
kavyasrinet 已提交
1680
    Args:
1681 1682 1683
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1684

K
kavyasrinet 已提交
1685
    Returns:
1686
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1687

K
kavyasrinet 已提交
1688
    Examples:
1689 1690
        .. code-block:: python

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1722
    """
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    if in_dygraph_mode():
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
        i = i.numpy()[0]
        return array[i]

1736
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
1737 1738 1739 1740 1741
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1742
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1743 1744 1745 1746 1747 1748
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1749 1750


1751
def shrink_memory(x, i, table):
1752
    """
Y
yuyang18 已提交
1753
    This function creates an operator to shrink rnn memory using the RankTable
1754
    as mentioned in the input parameter.
Y
yuyang18 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1775
    """
Y
Yang Yu 已提交
1776
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1777
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1778
    helper.append_op(
Y
Yang Yu 已提交
1779
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1780 1781 1782 1783 1784 1785
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1786 1787


1788
def array_length(array):
1789
    """
1790 1791
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
T
tianshuo78520a 已提交
1792
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
1793

K
kavyasrinet 已提交
1794
    Args:
1795
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
1796 1797

    Returns:
1798
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
1799 1800

    Examples:
Q
qiaolongfei 已提交
1801
        .. code-block:: python
K
kavyasrinet 已提交
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1832
    """
1833

1834 1835 1836 1837 1838 1839
    if in_dygraph_mode():
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

1840 1841 1842 1843 1844 1845
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
1846
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1847
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1848 1849 1850 1851
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1852 1853 1854


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1855
    """
1856 1857 1858
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1859 1860 1861
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1862
    def __init__(self, block):
1863
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1877 1878 1879 1880 1881 1882 1883 1884
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
1885
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
1886 1887 1888 1889 1890
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1891
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1903
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1904
        for each_input in inputs:
1905
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
1906
        self.inputs = inputs
1907
        self.is_scalar_condition = is_scalar_condition
1908
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

1932 1933 1934
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
1935
        param_list = [
W
Wu Yi 已提交
1936
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1937 1938
        ]

X
Xin Pan 已提交
1939 1940 1941 1942 1943
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1944 1945

        step_scope = parent_block.create_var(
1946
            type=core.VarDesc.VarType.STEP_SCOPES)
1947
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
1948 1949
            type='conditional_block',
            inputs={
1950 1951
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1952 1953 1954
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1955 1956 1957 1958 1959
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx

        return grad_sub_block_idx != -1

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            conditional_block_op.desc,
            cpt.to_text(set()), [grad_sub_block.desc])

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
            if grad_sub_block.desc.has_var_recursive(
                    cpt.to_bytes(grad_var_name)
            ) or grad_var_name == core.empty_var_name():
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2044

2045 2046 2047 2048 2049 2050 2051 2052
def copy_var_to_parent_block(var, layer_helper):
    if var is None:
        return None
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2053 2054
    parent_block_var = parent_block.create_var(
        dtype=var.dtype, shape=var.shape, type=var.type)
2055 2056 2057 2058 2059 2060
    assign(var, parent_block_var)
    return parent_block_var


def cond(pred, true_fn=None, false_fn=None, name=None):
    """
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

        2. Any tensors or operations created outside of ``true_fn`` and
        ``false_fn`` will be executed regardless of which branch is selected at
        runtime. This has frequently surprised users who expected a lazy
        semantics. For example:

        .. code-block:: python
        
            import paddle.fluid as fluid
            a = fluid.data(name='a', shape=[-1, 1], dtype='float32')
            b = fluid.data(name='b', shape=[-1, 1], dtype='float32')
            c = a * b
            out = fluid.layers.cond(a < b, lambda: a + c, lambda: b * b)

        No matter whether ``a < b`` , ``c = a * b`` will run.
2090 2091 2092 2093

    Args:
        pred(Variable): A boolean tensor whose numel should be 1. The boolean
            value determines whether to return the result of ``true_fn`` or
2094 2095 2096 2097 2098 2099
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2100
             don't have to set this parameter. For more information, please
2101 2102 2103 2104 2105
             refer to :ref:`api_guide_Name` .

    Returns:
        Variable|list(Variable)|tuple(Variable): returns ``true_fn()`` if the
        predicate ``pred`` is true else ``false_fn()`` .
2106 2107 2108

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2109 2110
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            from paddle.fluid.executor import Executor
            from paddle.fluid.framework import Program, program_guard

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
                return layers.fill_constant(
                    shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
                        shape=[2, 3], dtype='bool', value=True)

            def false_func():
                return layers.fill_constant(
                    shape=[3, 4], dtype='float32', value=3), layers.fill_constant(
                        shape=[4, 5], dtype='int64', value=2)

            main_program = Program()
            startup_program = Program()
            with program_guard(main_program, startup_program):
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
                pred = layers.less_than(x, y)            
                out = layers.cond(pred, true_func, false_func)
                # out is a tuple containing 2 tensors

            place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            ret = exe.run(main_program, fetch_list=out)
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
            #           [ True  True  True]]

2155
    """
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
    if in_dygraph_mode():
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
        assert pred.numpy().size == 1, "condition input's numel should be 1"
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
                        "The false_fn in cond must be callable, but received {}".
                        format(type(false_fn).__name__))
                return false_fn()
        return None

2176 2177
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2178 2179 2180
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2181
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2182 2183
    if true_fn is not None:
        if not callable(true_fn):
2184 2185 2186
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2187 2188 2189 2190
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2191
                true_output = map_structure(copy_to_parent_func,
2192 2193 2194
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2195 2196 2197
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2198 2199 2200 2201 2202
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True)
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2203
                false_output = map_structure(copy_to_parent_func,
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
    try:
        assert_same_structure(true_output, false_output, check_types=False)
    except ValueError as e:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: {}".
            format(e))

    mask = cast(pred, dtype='int32')
    merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask)
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


L
liym27 已提交
2232
def _error_message(what, arg_name, op_name, right_value, error_value):
2233
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable|list(Variable): Tensors returned by the callable from the first pair whose pred is True,
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not Variable.
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2270
            import paddle.fluid.layers as layers
L
liym27 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

            def fn_1():
                return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

            def fn_2():
                return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

            def fn_3():
                return layers.fill_constant(shape=[3], dtype='int32', value=3)

            main_program = fluid.default_startup_program()
            startup_program = fluid.default_main_program()
2283
            with fluid.program_guard(main_program, startup_program):
L
liym27 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)      # false: 0.3 == 0.1

                # Call fn_1 because pred_1 is True
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
                out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

                exe = fluid.Executor(fluid.CPUPlace())
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2311
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2312 2313 2314 2315 2316

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2317
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
                                   "2", str(len(pred_fn)) + "-tuple"))
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2354
class Switch(object):
Q
qiaolongfei 已提交
2355 2356
    """

2357 2358 2359 2360 2361 2362 2363
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2364 2365 2366 2367
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2368
    Member Functions:
2369
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2370 2371 2372 2373 2374 2375
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2386

2387 2388
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2389 2390 2391

    Examples:
        .. code-block:: python
2392 2393
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2394

2395
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2396 2397 2398 2399 2400
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2401
            zero_var = fluid.layers.fill_constant(
2402
                shape=[1], dtype='float32', value=0.0)
2403
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2404
                shape=[1], dtype='float32', value=1.0)
2405
            two_var = fluid.layers.fill_constant(
2406
                shape=[1], dtype='float32', value=2.0)
2407

2408
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2409 2410

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2411
                with switch.case(global_step == zero_var):
2412
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2413
                with switch.default():
2414
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2415

2416 2417 2418 2419 2420
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2421 2422
    """

2423 2424 2425 2426 2427 2428 2429 2430 2431
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2432 2433 2434 2435
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2512
    """
2513 2514 2515 2516
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2517 2518 2519 2520
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
2562
        print(res)
2563
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
2564 2565

    Args:
2566 2567
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2568

2569 2570
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2571

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2582

X
Xin Pan 已提交
2583
    """
Y
Yu Yang 已提交
2584 2585 2586 2587
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

2588
    def __init__(self, cond, name=None):
2589 2590
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
2591
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
2603
            parent_block = self._parent_block()
Y
Yu Yang 已提交
2604
            out_true = parent_block.create_var(
2605 2606
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2607
                dtype=x.dtype)
Y
Yu Yang 已提交
2608 2609

            out_false = parent_block.create_var(
2610 2611
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2612
                dtype=x.dtype)
Y
Yu Yang 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

2631
    def _parent_block(self):
Y
Yu Yang 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
2647
        parent_block = self._parent_block()
Y
Yu Yang 已提交
2648
        for each_out in outs:
2649 2650
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
2651 2652
            # create outside tensor
            outside_out = parent_block.create_var(
2653
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
2654
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
2655
                dtype=each_out.dtype)
Y
Yu Yang 已提交
2656 2657 2658
            out_table.append(outside_out)

            # assign local var to outside
2659
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
2660 2661 2662 2663

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
2664
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
2683
                    level=0))
Y
Yu Yang 已提交
2684
        return rlist
2685 2686 2687


class DynamicRNN(object):
Y
yuyang18 已提交
2688
    """
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
2701
    The input sequences will be shrank because only sequences of which the
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
2714

2715 2716 2717 2718
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
2719 2720 2721 2722

    Examples:
        .. code-block:: python

2723
            import paddle.fluid as fluid
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
2751
    """
2752 2753 2754 2755
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

2756 2757
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
2758 2759 2760 2761
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
2762
        self.zero_idx = None
2763 2764 2765
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
2766
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
2767 2768 2769 2770 2771
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

2772
    def step_input(self, x, level=0):
Y
yuyang18 已提交
2773
        """
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
2817

Y
yuyang18 已提交
2818
        Args:
2819 2820 2821 2822 2823 2824 2825
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
2826 2827

        Returns:
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2862
        """
2863 2864 2865
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
2866
                "step_input() can only take a Variable as its input.")
2867 2868 2869
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
2870
                name=unique_name.generate('lod_rank_table'),
2871 2872 2873 2874 2875
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
2876 2877
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
2878
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
2879 2880
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
2891 2892
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
2893 2894

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
2895
            name=unique_name.generate('dynamic_rnn_input_array'),
2896 2897 2898 2899 2900 2901 2902 2903
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
2904
        return array_read(array=input_array, i=self.step_idx)
2905

Y
yangyaming 已提交
2906
    def static_input(self, x):
Y
yuyang18 已提交
2907
        """
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
2981

Y
yuyang18 已提交
2982
        Args:
2983 2984 2985 2986
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
2987 2988

        Returns:
T
tianshuo78520a 已提交
2989
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3001 3002 3003 3004

        Examples:
            .. code-block:: python

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3031
        """
Y
yangyaming 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3041
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3051
    @signature_safe_contextmanager
3052
    def block(self):
Y
yuyang18 已提交
3053
        """
3054 3055 3056 3057 3058 3059
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3060
        """
3061 3062
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3063 3064
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
3065 3066 3067 3068
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3069
            increment(x=self.step_idx, value=1.0, in_place=True)
3070 3071

            for new_mem, mem_array in self.mem_link:
3072 3073
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
3074 3075 3076 3077 3078
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
3079 3080 3081 3082 3083

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
3084
                    x=each_array, table=self.lod_rank_table))
3085 3086

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3087
        """
T
tianshuo78520a 已提交
3088
        This function is used to get the output  sequences of DynamicRNN.
3089 3090 3091 3092 3093 3094 3095 3096 3097

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3098
        """
3099
        if self.status != DynamicRNN.AFTER_RNN:
3100 3101
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3102 3103 3104 3105 3106
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3107 3108 3109 3110 3111 3112
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
3113
        """
3114 3115 3116
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3130
            value (float, optional): When init is None, it is used as initialized value
3131 3132
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3133
                the memory needs to reorder like the RNN's input sequences. It should be
3134 3135 3136 3137 3138 3139 3140
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3141
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3142
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3143
                the memory Tensor also need to be shrank and will only retain data \
3144 3145 3146 3147 3148 3149
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3150

3151 3152 3153
        Examples:
            .. code-block:: python

3154
                import paddle.fluid as fluid
3155

3156 3157
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3158

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3170

3171 3172
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3173 3174


3175 3176
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3197
        """
3198
        self._assert_in_rnn_block_('memory')
3199
        self._init_zero_idx_()
3200 3201 3202 3203 3204
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
3205 3206 3207 3208 3209 3210 3211 3212
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3213
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
3224
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3225
                name=unique_name.generate('dynamic_rnn_mem_array'),
3226 3227 3228 3229
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
3230
                inputs={'X': init_tensor,
3231 3232
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
3233
            retv = array_read(array=mem_array, i=self.step_idx)
3234
            retv = shrink_memory(
3235
                x=retv, i=self.step_idx, table=self.lod_rank_table)
3236 3237 3238 3239 3240 3241 3242 3243 3244
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3245
                name=unique_name.generate('mem_init'), dtype=dtype)
3246
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
3247 3248
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3266
        """
3267 3268
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3269
        Args:
3270 3271 3272
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3273 3274 3275

        Returns:
            None
3276 3277 3278 3279 3280 3281
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3282
        """
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3300
        """
3301
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3302 3303

        Args:
3304 3305
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3306 3307 3308

        Returns:
            None
3309 3310 3311

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3312
        """
3313 3314 3315 3316
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
3317
                name=unique_name.generate_with_ignorable_key("_".join(
3318 3319 3320 3321 3322 3323
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
3352 3353


L
liym27 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
    This operator is like a C++ switch/case statement.

    Args:
        branch_index(Variable): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable|list(Variable): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
        TypeError: If the type of ``branch_index`` is not Variable.
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
3383 3384
            import paddle.fluid.layers as layers

L
liym27 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
            def fn_1():
                return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

            def fn_2():
                return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

            def fn_3():
                return layers.fill_constant(shape=[3], dtype='int32', value=3)

            main_program = fluid.default_startup_program()
            startup_program = fluid.default_main_program()
3396
            with fluid.program_guard(main_program, startup_program):
L
liym27 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
                index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
                index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

                exe = fluid.Executor(fluid.CPUPlace())
3416
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3417 3418 3419 3420 3421 3422 3423 3424
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3425 3426
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3427 3428 3429 3430

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3431
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
3444
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
3457
                                   "switch_case", int, type(key)))
L
liym27 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494

            if key in keys_of_fns:
                raise ValueError(
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".
                    format(key))
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
                    _error_message("The type of function for key {}".format(
                        key), "branch_fns", "switch_case", "callable", type(
                            fn)))

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3495
@templatedoc()
Y
Yang Yu 已提交
3496
def reorder_lod_tensor_by_rank(x, rank_table):
3497 3498 3499 3500
    """
    ${comment}

    Args:
3501 3502
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3503 3504
    
    Returns:
3505
        out(${out_type}): ${out_comment}.
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3519 3520 3521 3522 3523 3524 3525

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3526 3527
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3528
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
3529 3530 3531 3532 3533 3534
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
3535 3536


3537
def is_empty(x, cond=None):
3538
    """
F
fengjiayi 已提交
3539
    Test whether a Variable is empty.
3540 3541

    Args:
F
fengjiayi 已提交
3542
        x (Variable): The Variable to be tested.
3543 3544
        cond (Variable, optional): Output parameter. Default: None. If this parameter is given, it
                              saves the test result of given 'x'.
3545 3546

    Returns:
F
fengjiayi 已提交
3547
        Variable: A bool scalar. True if 'x' is an empty Variable.
3548 3549 3550

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
3551
                   not bool.
3552 3553 3554 3555

    Examples:
        .. code-block:: python

3556 3557
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
3558 3559
          res = fluid.layers.is_empty(x=input)
          # or:
3560 3561
          # fluid.layers.is_empty(x=input, cond=res)

3562 3563 3564
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
3565
        cond = helper.create_variable_for_type_inference(dtype='bool')
3566 3567 3568 3569 3570 3571 3572 3573 3574
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond