framework.py 193.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183

184 185 186 187 188 189 190
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
191 192

    Returns:
193
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198 199 200 201 202 203 204 205
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
206 207

    """
L
lujun 已提交
208
    return _dygraph_tracer_ is not None
209 210


211 212 213
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
214
        ), "We don't support %s in imperative mode" % func.__name__
215 216 217 218 219 220 221 222
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
223 224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We only support '%s()' in static graph mode, please call 'paddle.enable_static()' to enter static graph mode." % func.__name__
233 234 235 236 237
        return func(*args, **kwargs)

    return __impl__


238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


273 274
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
275
static_only = wrap_decorator(_static_only_)
276
fake_interface_only = wrap_decorator(_fake_interface_only_)
277 278


L
lujun 已提交
279 280
def _dygraph_tracer():
    return _dygraph_tracer_
281

W
Wu Yi 已提交
282

M
minqiyang 已提交
283
def _current_expected_place():
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
304 305


L
Leo Chen 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
323
def _cpu_num():
324
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
325 326 327 328 329 330 331 332
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
333
        os.environ['CPU_NUM'] = str(1)
334
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
335 336 337 338 339 340 341 342 343 344
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
345 346


347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
362 363 364 365
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

366
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
367 368 369 370

    Examples:
        .. code-block:: python

371 372
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
373 374 375 376
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
377
def cuda_places(device_ids=None):
L
lujun 已提交
378
    """
379 380 381 382 383
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
384 385

    If :code:`device_ids` is None, environment variable of
386
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
387 388 389
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
390
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
391 392

    If :code:`device_ids` is not None, it should be the device
393
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
394 395 396
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
397 398
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
399 400

    Returns:
401
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
402 403 404 405

    Examples:
        .. code-block:: python

406
            import paddle.fluid as fluid
L
lujun 已提交
407 408 409
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
410 411 412
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
413
        device_ids = _cuda_ids()
S
sneaxiy 已提交
414 415 416 417 418 419
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
420
    """
421
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
422 423 424
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
425 426
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
427 428
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
429

430 431
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
432 433

    Returns:
434
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
435 436 437 438

    Examples:
        .. code-block:: python

439
            import paddle.fluid as fluid
L
lujun 已提交
440 441 442
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
443 444 445 446 447 448
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
449
    """
450
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
451 452 453

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
454 455 456 457
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
458

459 460
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
461 462

    Returns:
463
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
464 465 466 467

    Examples:
        .. code-block:: python

468
            import paddle.fluid as fluid
L
lujun 已提交
469 470 471 472 473
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
474 475 476
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
477 478
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
479 480


481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
507
@signature_safe_contextmanager
508 509
def name_scope(prefix=None):
    """
510 511
    :api_attr: Static Graph

512
    Generate hierarchical name prefix for the operators in Static Graph.
513

T
Tao Luo 已提交
514 515 516
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
517
        Don't use it in dygraph, since it will cause memory leak.
518 519

    Args:
T
Tao Luo 已提交
520
        prefix(str, optional): prefix. Default is none.
521 522 523

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
524

525 526 527 528
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
             a = paddle.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
529
             b = a + 1
530
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
531
                c = b * 1
532
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
533
                d = c / 1
534 535 536
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
537 538 539
                g = f - 1

          # Op are created in the default main program.  
540
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
556 557
    """
    # TODO(panyx0718): Only [0-9a-z].
558
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
559 560 561
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
562
        assert prefix, "namescope prefix can not be empty."
563 564
        global _name_scope
        _name_scope = _name_scope.child(prefix)
565 566 567 568
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
569 570 571 572 573 574 575 576 577 578 579 580


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
581 582 583
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
584 585 586 587


def grad_var_name(var_name):
    """
588 589
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
590 591 592
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
593

594
def convert_np_dtype_to_dtype_(np_dtype):
595 596
    """
    Convert the data type in numpy to the data type in Paddle
597

598
    Args:
599
        np_dtype(np.dtype): the data type in numpy.
600

601 602
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
603 604

    """
605 606
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
607
        return core.VarDesc.VarType.FP32
608
    elif dtype == np.float64:
609
        return core.VarDesc.VarType.FP64
610
    elif dtype == np.float16:
611
        return core.VarDesc.VarType.FP16
612
    elif dtype == np.int32:
613
        return core.VarDesc.VarType.INT32
614
    elif dtype == np.int16:
615
        return core.VarDesc.VarType.INT16
616
    elif dtype == np.int64:
617
        return core.VarDesc.VarType.INT64
618
    elif dtype == np.bool:
619
        return core.VarDesc.VarType.BOOL
620
    elif dtype == np.uint16:
621 622 623
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
624 625
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
626 627
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
628
    else:
M
minqiyang 已提交
629
        raise ValueError("Not supported numpy dtype %s" % dtype)
630 631 632


def dtype_is_floating(dtype):
633 634 635
    """
    Check the data type is floating or not.
    Args:
636
        dtype(np.dtype|core.VarDesc.VarType): data type.
637 638 639 640 641
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
642
    if not isinstance(dtype, core.VarDesc.VarType):
643 644
        dtype = convert_np_dtype_to_dtype_(dtype)

645 646 647 648
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
649 650


Y
Yang Yang(Tony) 已提交
651
def _debug_string_(proto, throw_on_error=True):
652 653 654 655 656 657 658 659 660 661 662
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
663
    error_fields = list()
Y
Yang Yang(Tony) 已提交
664
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
665 666
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
667 668 669
    return proto.__str__()


670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
727
    target_block = default_main_program().current_block()
728 729 730 731 732 733 734 735 736 737 738

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
739
            })
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
779
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
780
                fill_constant([1], 1, force_cpu=True, out=temp_1)
781
                temp_end = target_block.create_var(dtype=slice_item.dtype)
782
                target_block.append_op(
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
822

823
    # starts
L
Leo Chen 已提交
824
    if contain_var(slice_start):
825 826 827 828 829 830 831 832
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
833 834 835 836
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
837 838 839 840 841 842 843
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
844 845 846
    else:
        attrs['ends'] = slice_end

847 848
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
849
        if contain_var(slice_step):
850 851 852 853 854 855 856
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
857 858
        else:
            attrs['strides'] = slice_step
859 860 861 862 863 864
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
865
        slice_out_var = target_block.create_var(
866 867 868
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

869
        target_block.append_op(
870 871 872 873 874 875 876
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
877
        strided_slice_out_var = target_block.create_var(
878 879 880
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
881
        target_block.append_op(
882 883 884 885 886 887 888 889
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
890
        reverse_out_var = target_block.create_var(
891 892 893
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
894
        target_block.append_op(
895 896 897 898 899 900 901 902 903 904 905
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
906
class Variable(object):
907
    """
J
Jiabin Yang 已提交
908
    **Notes**:
909
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
910

911 912
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
913 914 915
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
916
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
917 918
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
919

920
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
921
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
922

T
tianshuo78520a 已提交
923
    Most of a Variable's member variables can be set to be None. It mean
924
    it is not available or will be specified later.
925

926
    Examples:
927 928
        In Static Graph Mode:

929 930
        .. code-block:: python

931
            import paddle.fluid as fluid
932
            cur_program = fluid.Program()
933 934 935 936
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
937
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
938 939 940 941 942 943 944 945 946

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

947 948
    """

Y
Yu Yang 已提交
949 950
    def __init__(self,
                 block,
Y
Yu Yang 已提交
951
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
952 953 954 955
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
956
                 capacity=None,
Q
QI JUN 已提交
957
                 persistable=None,
F
fengjiayi 已提交
958
                 error_clip=None,
Y
Yu Yang 已提交
959
                 stop_gradient=False,
F
fengjiayi 已提交
960
                 is_data=False,
H
Huihuang Zheng 已提交
961
                 need_check_feed=False,
H
hong 已提交
962
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
963
                 **kwargs):
Y
Yu Yang 已提交
964 965
        self.block = block
        if name is None:
Y
Yu Yang 已提交
966
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
967

Y
Yu Yang 已提交
968
        if dtype is not None:
969
            if not isinstance(dtype, core.VarDesc.VarType):
970
                dtype = convert_np_dtype_to_dtype_(dtype)
971

H
hong 已提交
972 973
        self.belong_to_optimizer = belong_to_optimizer

974 975 976 977 978
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
979

980 981 982
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
983

984 985 986 987 988 989 990
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
991

992
        if shape is not None:
993
            if is_new_var:
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1035

1036 1037
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1038

1039 1040 1041 1042 1043 1044 1045
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1046

1047 1048 1049 1050
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1051

1052
    @fake_interface_only
1053 1054
    def detach(self):
        """
J
Jiabin Yang 已提交
1055
        **Notes**:
T
tianshuo78520a 已提交
1056
            **This API is ONLY available in Dygraph mode**
1057

1058
        Returns a new Variable, detached from the current graph.
1059

1060
        Returns:
J
Jiabin Yang 已提交
1061
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1062

1063

1064 1065 1066 1067 1068
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1069
                from paddle.fluid.dygraph import Linear
1070 1071 1072 1073
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1074
                    linear = Linear(32, 64)
1075
                    data = to_variable(data)
1076
                    x = linear(data)
1077 1078 1079
                    y = x.detach()

        """
1080
        pass
1081

1082
    @fake_interface_only
1083
    def numpy(self):
1084
        """
J
Jiabin Yang 已提交
1085
        **Notes**:
T
tianshuo78520a 已提交
1086
            **This API is ONLY available in Dygraph mode**
1087

J
Jiabin Yang 已提交
1088
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1089 1090 1091 1092 1093

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1094
            ndarray: dtype is same as current Variable
1095 1096 1097 1098 1099 1100

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1101
                from paddle.fluid.dygraph import Linear
1102 1103 1104 1105
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1106
                    linear = Linear(32, 64)
1107
                    data = to_variable(data)
1108
                    x = linear(data)
1109 1110 1111
                    print(x.numpy())

        """
1112
        pass
1113

1114
    @fake_interface_only
1115 1116
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1117
        **Notes**:
T
tianshuo78520a 已提交
1118
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1130
                from paddle.fluid.dygraph import Linear
1131 1132
                import numpy as np

1133
                data = np.ones([3, 1024], dtype='float32')
1134
                with fluid.dygraph.guard():
1135
                    linear = fluid.dygraph.Linear(1024, 4)
1136
                    t = to_variable(data)
1137
                    linear(t)  # call with default weight
1138
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1139 1140
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1141 1142

        """
1143
        pass
1144

1145
    @fake_interface_only
1146
    def backward(self, retain_graph=False):
1147
        """
J
Jiabin Yang 已提交
1148
        **Notes**:
T
tianshuo78520a 已提交
1149
            **This API is ONLY available in Dygraph mode**
1150

1151
        Run backward of current Graph which starts from current Tensor.
1152

J
Jiabin Yang 已提交
1153
        Args:
1154 1155 1156 1157
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1158

J
Jiabin Yang 已提交
1159 1160
        Returns:
            NoneType: None
1161 1162 1163 1164 1165

        Examples:
            .. code-block:: python

                import numpy as np
1166 1167
                import paddle
                paddle.disable_static()
1168 1169

                x = np.ones([2, 2], np.float32)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
1180 1181

        """
1182
        pass
1183

1184
    @fake_interface_only
1185
    def gradient(self):
1186
        """
J
Jiabin Yang 已提交
1187
        **Notes**:
T
tianshuo78520a 已提交
1188
            **This API is ONLY available in Dygraph mode**
1189 1190 1191

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1192
        Returns:
1193
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1194 1195 1196 1197 1198 1199 1200

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1201
                # example1: return ndarray
1202 1203 1204 1205 1206 1207 1208 1209 1210
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1211
                    loss2.backward()
1212 1213
                    print(loss2.gradient())

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1227
        """
1228
        pass
1229

1230
    @fake_interface_only
1231
    def clear_gradient(self):
1232
        """
J
Jiabin Yang 已提交
1233
        **Notes**:
T
tianshuo78520a 已提交
1234
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1235 1236

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1237

J
Jiabin Yang 已提交
1238
        Clear  (set to ``0`` ) the Gradient of Current Variable
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1257
                    loss2.backward()
1258 1259 1260 1261 1262
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1263
        pass
X
Xin Pan 已提交
1264

1265
    def __str__(self):
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1310

F
update  
fengjiayi 已提交
1311
    def to_string(self, throw_on_error, with_details=False):
1312 1313 1314
        """
        Get debug string.

J
Jiabin Yang 已提交
1315 1316 1317 1318 1319
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1320

1321 1322
        Returns:
            str: The debug string.
1323 1324 1325 1326 1327

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1328

1329 1330 1331 1332 1333
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1334
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1335
                print("=============with detail===============")
1336
                print(new_variable.to_string(True, True))
1337
        """
F
update  
fengjiayi 已提交
1338 1339
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1340
        protostr = self.desc.serialize_to_string()
1341
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1342 1343 1344 1345
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1346 1347 1348
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1349
        return res_str
1350 1351 1352

    __repr__ = __str__

1353
    @property
1354
    def stop_gradient(self):
J
Jiabin Yang 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1370 1371
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1372 1373 1374
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1375 1376
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1377 1378 1379 1380
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1381
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1382 1383
                assert (out1.gradient() == 0).all()
        """
1384
        return self._stop_gradient
1385

1386 1387
    @stop_gradient.setter
    def stop_gradient(self, s):
1388
        self._stop_gradient = s
1389

1390 1391
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1413
        return self.desc.persistable()
1414

Y
Yu Yang 已提交
1415 1416
    @persistable.setter
    def persistable(self, p):
1417
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1418

Y
Yu Yang 已提交
1419 1420
    @property
    def name(self):
J
Jiabin Yang 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1437
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1459 1460
    @name.setter
    def name(self, new_name):
1461
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1462

Y
Yu Yang 已提交
1463 1464
    @property
    def shape(self):
J
Jiabin Yang 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1482
        # convert to tuple, make it as same as numpy API.
1483
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1484 1485

    @property
F
fengjiayi 已提交
1486
    def dtype(self):
J
Jiabin Yang 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1503
        return self.desc.dtype()
Y
Yu Yang 已提交
1504 1505 1506

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1528 1529 1530
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1531
        return self.desc.lod_level()
Y
Yu Yang 已提交
1532

Y
Yu Yang 已提交
1533 1534
    @property
    def type(self):
J
Jiabin Yang 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1551
        return self.desc.type()
Y
Yu Yang 已提交
1552

W
Wu Yi 已提交
1553
    def _set_error_clip(self, error_clip):
1554 1555 1556 1557 1558 1559 1560 1561 1562
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1563 1564
        self.error_clip = error_clip

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1605
            raise ValueError("slice step can not be zero")
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1681
    def _cloneVar(self, copy=False):
1682 1683
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1684 1685
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1686 1687 1688 1689
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1690
        new_var = self._cloneVar()
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1701
        new_var = self._cloneVar()
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1712
                return self._cloneVar(True)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1731
                return self._cloneVar(True)
1732
            index = int(item)
1733
            if (index > 0 and index >= self.shape[axis]) \
1734 1735 1736 1737 1738 1739 1740
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1741
        return _getitem_impl_(self, item)
1742

Y
Yu Yang 已提交
1743

F
fengjiayi 已提交
1744 1745 1746
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1747

1748 1749
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1750 1751 1752 1753
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1754
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1755 1756 1757 1758
        ret_values.append(op_proto)
    return ret_values


1759 1760
class ComplexVariable(object):
    """
1761 1762
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1763 1764 1765
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1766
        **The constructor of ComplexTensor should not be invoked directly.**
1767

1768
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1769 1770

    Args:
1771 1772
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1773 1774 1775 1776
    
    Examples:
        .. code-block:: python

1777
            import paddle
1778 1779
            import numpy as np

1780 1781 1782 1783 1784 1785 1786 1787
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1788 1789
    """

1790 1791 1792 1793 1794
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1841 1842 1843
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1844 1845 1846 1847

    __repr__ = __str__


F
fengjiayi 已提交
1848
class OpProtoHolder(object):
1849 1850 1851 1852
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1862
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1863 1864 1865 1866 1867 1868
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1869 1870 1871 1872 1873 1874 1875 1876
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1877 1878
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1879 1880
        return self.op_proto_map[type]

1881 1882 1883 1884 1885 1886
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1887 1888 1889 1890
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1891
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1892
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1893 1894
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1895 1896
        }

F
fengjiayi 已提交
1897

X
Xin Pan 已提交
1898
class Operator(object):
1899
    """
1900 1901 1902 1903 1904 1905 1906
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1907
        type(str): The type of operator. Default None.
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1928
        Block.append_op or Block._prepend_op instead.
1929 1930 1931 1932

    Examples:
        .. code-block:: python

1933
            import paddle.fluid as fluid
1934
            cur_program = fluid.Program()
1935 1936 1937 1938 1939
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1940
    """
1941
    OP_WITHOUT_KERNEL_SET = {
1942 1943
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1944 1945
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1946
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1947
    }
1948

Y
Yu Yang 已提交
1949 1950
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1951
                 desc,
Y
Yu Yang 已提交
1952 1953 1954
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1955
                 attrs=None):
L
lujun 已提交
1956
        if in_dygraph_mode():
1957 1958
            if type is None:
                raise ValueError(
1959
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1960
            self._type = type
M
minqiyang 已提交
1961
            self.attrs = attrs if attrs else {}
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1976
                )] = self.block.program._op_role
1977 1978 1979

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1980 1981
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1982 1983 1984 1985 1986 1987 1988 1989

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1990
                    "`type` to initialized an Operator can not be None.")
1991 1992
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1993 1994 1995 1996 1997 1998 1999
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2000 2001 2002 2003 2004 2005 2006

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2038
                        if not isinstance(in_args, (list, tuple)):
2039 2040 2041 2042 2043 2044
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2045
                        for index, arg in enumerate(in_args):
2046 2047 2048 2049
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2050
                            elif isinstance(arg, (Variable, core.VarBase)):
2051
                                in_arg_names.append(cpt.to_text(arg.name))
2052
                            else:
2053 2054 2055 2056
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2057 2058
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2085
                        if not in_dygraph_mode():
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2105
    def _has_kernel(self, op_type):
2106 2107
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2108
    def to_string(self, throw_on_error):
2109
        """
2110 2111
        Get debug string.

2112
        Args:
2113 2114
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2115

2116 2117
        Returns:
            str: The debug string.
2118 2119

        """
2120
        protostr = self.desc.serialize_to_string()
2121
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2122 2123
        return _debug_string_(proto, throw_on_error)

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2217
    def __str__(self):
2218
        return self._to_readable_code()
2219 2220 2221

    __repr__ = __str__

F
fengjiayi 已提交
2222 2223
    @property
    def type(self):
2224
        return self.desc.type()
F
fengjiayi 已提交
2225 2226

    def input(self, name):
2227
        """
2228
        Get the input arguments according to the input parameter name.
2229

2230 2231
        Args:
            name(str): The input parameter name.
2232

2233 2234 2235
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2236
        """
F
fengjiayi 已提交
2237 2238
        return self.desc.input(name)

W
Wu Yi 已提交
2239
    def _rename_input(self, old_name, new_name):
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2250
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2251

W
Wu Yi 已提交
2252
    def _rename_output(self, old_name, new_name):
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2263
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2264

F
fengjiayi 已提交
2265 2266 2267 2268
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2269 2270 2271 2272 2273 2274 2275 2276
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2277
    def output(self, name):
2278
        """
2279
        Get output arguments by the output parameter name.
2280

2281 2282
        Args:
            name(str): The output parameter name.
2283

2284 2285 2286
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2287
        """
F
fengjiayi 已提交
2288 2289 2290 2291 2292 2293
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2294 2295 2296 2297 2298 2299 2300 2301
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2302
    def has_attr(self, name):
2303
        """
2304 2305
        Whether this Operator has the attribute with name or not.

2306
        Args:
2307
            name(str): the attribute name.
2308

2309 2310
        Returns:
            bool: True if has this attribute.
2311 2312

        """
F
fengjiayi 已提交
2313 2314 2315
        return self.desc.has_attr(name)

    def attr_type(self, name):
2316
        """
2317
        Get the type of attribute by attribute's name.
2318

2319 2320
        Args:
            name(str): the attribute name.
2321

2322 2323
        Returns:
            core.AttrType: the attribute type.
2324
        """
F
fengjiayi 已提交
2325 2326
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2327
    def _set_attr(self, name, val):
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2338 2339
        self._update_desc_attr(name, val)

2340 2341 2342
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2354 2355
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2356 2357
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2358
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2359 2360 2361 2362
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2363
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2364

F
fengjiayi 已提交
2365 2366 2367 2368 2369
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2370
        """
2371 2372
        Get the attribute by name.

2373
        Args:
2374
            name(str): the attribute name.
2375

2376 2377
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2378 2379
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2380
        return self.desc.attr(name)
Y
Yu Yang 已提交
2381

W
Wu Yi 已提交
2382
    def _block_attr_id(self, name):
2383
        """
G
gongweibao 已提交
2384
        Get the block attribute's id by name.
2385

2386 2387
        Args:
            name(str): the attribute name.
2388

2389 2390
        Returns:
            int: the block index.
2391
        """
W
Wu Yi 已提交
2392
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2393

W
Wu Yi 已提交
2394
    def _block_attr(self, name):
G
gongweibao 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2405
        id = self._block_attr_id(name)
G
gongweibao 已提交
2406 2407 2408
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2409
    def _blocks_attr(self, name):
G
gongweibao 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2420
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2421 2422 2423 2424 2425
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2426
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2437
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2438

J
JiayiFeng 已提交
2439
    def all_attrs(self):
F
fengjiayi 已提交
2440
        """
2441 2442 2443
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2444
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2445 2446 2447 2448
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2449 2450
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2451
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2452 2453 2454
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2455
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2456 2457 2458 2459
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2460 2461
        return attr_map

2462 2463 2464
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2465 2466 2467 2468

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2469 2470 2471
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2472 2473 2474 2475 2476 2477 2478 2479

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2480 2481
            return False

2482 2483 2484 2485 2486 2487
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2488

Y
Yu Yang 已提交
2489
class Block(object):
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2504
        use `Program._create_block()` to create a block.
2505 2506 2507 2508

    Examples:
        .. code-block:: python

2509 2510 2511
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2512 2513 2514 2515 2516 2517 2518 2519 2520
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2521
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2522
        self.desc = program.desc.block(idx)
2523
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2524
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2525
        self.program = program
2526
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2527

2528
    def __str__(self):
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2575

F
fengjiayi 已提交
2576 2577
    def to_string(self, throw_on_error, with_details=False):
        """
2578 2579
        Get debug string.

F
fengjiayi 已提交
2580 2581
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2582
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2583
            with_details(bool): more details about variables and parameters
2584 2585
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2586

2587 2588
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2589 2590 2591 2592
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2593
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2594 2595
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2596
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2597
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2598
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2599
            for op in self.ops:
F
fengjiayi 已提交
2600 2601
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2602 2603 2604
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2605 2606
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2607 2608
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2609 2610 2611

    __repr__ = __str__

Y
Yu Yang 已提交
2612 2613
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2614
        return self.desc.parent
Y
Yu Yang 已提交
2615

Y
Yu Yang 已提交
2616 2617 2618 2619
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2620
    def _set_forward_block_idx(self, idx):
2621 2622 2623 2624 2625 2626 2627 2628 2629
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2630
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2631

2632 2633 2634 2635 2636 2637 2638 2639
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2640 2641
    @property
    def idx(self):
Y
Yu Yang 已提交
2642
        return self.desc.id
Y
Yu Yang 已提交
2643

Q
Qiao Longfei 已提交
2644
    def var(self, name):
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2658
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2659 2660 2661
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2662 2663
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2664
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2665
        return v
Q
Qiao Longfei 已提交
2666

X
Xin Pan 已提交
2667
    def _find_var_recursive(self, name):
2668 2669 2670 2671 2672 2673 2674
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2675
            Variable: the Variable with the giving name. Or None if not found.
2676
        """
Y
Yu Yang 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2701
        return None
Y
Yu Yang 已提交
2702

X
Xin Pan 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2722

Q
Qiao Longfei 已提交
2723
    def all_parameters(self):
2724
        return list(self.iter_parameters())
2725

2726
    def iter_parameters(self):
M
minqiyang 已提交
2727
        return (item[1] for item in six.iteritems(self.vars)
2728
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2729

Y
Yu Yang 已提交
2730
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2731 2732 2733
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2734 2735 2736
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2737
        return var
Y
Yu Yang 已提交
2738

Q
Qiao Longfei 已提交
2739 2740 2741
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2742
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2743 2744
        """
        Rename variable in vars and ops' inputs and outputs
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2757
        """
M
minqiyang 已提交
2758 2759
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2760

T
typhoonzero 已提交
2761
        if not self.has_var(name):
2762
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2763 2764
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2765
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2766 2767 2768 2769 2770 2771
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2772
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2773 2774 2775 2776
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2777
        orig_var_type = v.type
M
minqiyang 已提交
2778
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2779
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2780
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2781
        if var_type == "Parameter":
L
Leo Chen 已提交
2782 2783
            if in_dygraph_mode():
                var = ParamBase(
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2794 2795
                var = Parameter(
                    self,
2796 2797 2798 2799 2800 2801 2802 2803 2804
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2805
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2806 2807
            var = Variable(
                self,
T
typhoonzero 已提交
2808
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2809 2810 2811 2812
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2813
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2814 2815 2816
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2817
        self._sync_with_cpp()
2818
        return var
T
typhoonzero 已提交
2819

W
Wu Yi 已提交
2820 2821
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2822
        self.desc._remove_var(cpt.to_bytes(name))
2823 2824
        del self.vars[name]

Y
Yu Yang 已提交
2825 2826
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2827
        param = None
L
Leo Chen 已提交
2828
        if in_dygraph_mode():
2829
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2830 2831
        else:
            param = Parameter(global_block, *args, **kwargs)
2832
        if 'initializer' in kwargs:
2833 2834 2835 2836 2837

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2838 2839 2840 2841 2842
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2854
                # TODO already inited, do nothing, should log a warning
2855 2856 2857
                pass
            else:
                initializer(param, self)
2858
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2859
        return param
Y
Yu Yang 已提交
2860

Y
Yu Yang 已提交
2861
    def append_op(self, *args, **kwargs):
2862 2863 2864 2865 2866 2867
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2868
        if in_dygraph_mode():
2869
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2870
            type = kwargs.get("type", None)
2871 2872 2873
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2874
                type=type,
M
minqiyang 已提交
2875 2876
                inputs=None,
                outputs=None,
2877
                attrs=attrs)
2878

M
minqiyang 已提交
2879 2880 2881
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2882
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2883 2884

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2885
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2886 2887
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2888
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2889
        else:
2890 2891 2892 2893 2894 2895 2896 2897 2898
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2899
            self.ops.append(op)
M
minqiyang 已提交
2900

2901 2902
        return op

W
Wu Yi 已提交
2903
    def _insert_op(self, index, *args, **kwargs):
2904 2905 2906 2907 2908 2909 2910 2911 2912
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2913 2914
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2915 2916 2917 2918
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2919
    def _remove_op(self, index):
2920 2921 2922 2923 2924 2925 2926 2927 2928
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2929 2930
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2931 2932
        del self.ops[index]

W
Wu Yi 已提交
2933
    def _slice_ops(self, start, end):
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2944
        return self.ops[start:end]
Y
Yancey1989 已提交
2945

W
Wu Yi 已提交
2946
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2947
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2948 2949
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2950
            op = Operator(
J
Jiabin Yang 已提交
2951
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2952

J
Jiabin Yang 已提交
2953
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2954
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2955 2956
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2957
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2958
        else:
2959 2960 2961 2962 2963 2964 2965 2966
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2967
            self.ops.insert(0, op)
2968

Y
Yu Yang 已提交
2969 2970
        return op

W
Wu Yi 已提交
2971
    def _sync_with_cpp(self):
2972
        """
2973 2974
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2975
        """
Q
Qiao Longfei 已提交
2976 2977 2978 2979 2980
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2981
        # sync variables removed from c++ end
2982
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2983
            if not self.desc.find_var(cpt.to_bytes(var)):
2984 2985
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2986
        # sync operators from cpp
2987 2988 2989 2990
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3007 3008 3009 3010 3011

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3012
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3013 3014 3015 3016 3017 3018 3019

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3033 3034 3035 3036
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3037
    def _copy_param_info_from(self, other):
3038
        """
3039 3040
        Copy the information of parameters from the other block.

3041
        Args:
3042 3043 3044 3045 3046
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3047 3048 3049 3050 3051

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3052 3053
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3054
        for p in other.iter_parameters():
3055 3056 3057
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3058 3059
                # if the Parameter is pruned, v may be None
                continue
3060
            assert isinstance(v, Variable)
3061
            new_p = None
L
Leo Chen 已提交
3062 3063
            if in_dygraph_mode():
                new_p = ParamBase(
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3075 3076
                new_p = Parameter(
                    block=self,
3077 3078 3079
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3080 3081
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3082 3083 3084 3085 3086 3087
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3088 3089
            self.vars[new_p.name] = new_p

3090
    def _clone_variable(self, var, force_persistable=True):
3091 3092
        """
        Clone a variable into current block.
3093

3094 3095
        Args:
            var: the variable to be cloned.
3096 3097 3098
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3099 3100

        Returns:
3101
            Variable: the new  variable cloned from 'var' in current block.
3102 3103
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3104 3105 3106 3107 3108
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3109 3110
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3111
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3112 3113 3114 3115 3116 3117
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3118
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3119 3120
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3121 3122 3123 3124 3125 3126 3127
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3128
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3129 3130
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3131
        return ret_var
3132

Y
Yu Yang 已提交
3133

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3229
    def remove_input_by_id(self, node_id):
3230 3231 3232 3233 3234 3235
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3236
        self.node.remove_input(node_id)
3237

3238
    def remove_input(self, node):
3239 3240 3241 3242
        """
        Remove a node from inputs.

        Args:
3243
            node(IrNode): the node being removed.
3244
        """
3245
        self.node.remove_input(node.node)
3246

3247
    def append_input(self, node):
3248 3249 3250 3251
        """
        Append a node in inputs.

        Args:
3252
            node(IrNode): the node being appended.
3253
        """
3254
        self.node.append_input(node.node)
3255 3256 3257 3258 3259 3260 3261 3262

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3263
    def remove_output_by_id(self, node_id):
3264 3265 3266 3267 3268 3269
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3270
        self.node.remove_output(node_id)
3271

3272
    def remove_output(self, node):
3273 3274 3275 3276
        """
        Remove a node from outputs.

        Args:
3277
            node(IrNode): the node being removed.
3278
        """
3279
        self.node.remove_output(node.node)
3280

3281
    def append_output(self, node):
3282 3283 3284 3285
        """
        Append a node in outputs.

        Args:
3286
            node(IrNode): the node being appended.
3287
        """
3288
        self.node.append_output(node.node)
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3336
            "The node variable description can not be None."
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3347
            "The node variable description can not be None."
3348 3349
        return self.node.var().persistable()

3350 3351 3352 3353 3354 3355 3356 3357
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3358
            "The node variable description can not be None."
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3369
            "The node variable description can not be None."
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3380
            "The node variable description can not be None."
3381 3382
        return self.node.var().shape()

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3430
            "The node operator description can not be None."
3431 3432
        self.node.op()._rename_input(old_input_name, new_input_name)

3433 3434 3435 3436 3437 3438 3439 3440 3441
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3442
            "The node operator description can not be None."
3443 3444
        self.node.op()._rename_output(old_output_name, new_output_name)

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3456
            "The node operator description can not be None."
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3470
            "The node operator description can not be None."
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3481
            "The node operator description can not be None."
3482 3483
        return self.node.op().set_type(new_type)

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3499
            "The node operator description can not be None."
3500 3501 3502 3503
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3504
                all(isinstance(v, Block) for v in val):
3505 3506
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3507
                isinstance(val, core.ProgramDesc):
3508 3509 3510 3511
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3512 3513 3514 3515 3516 3517 3518 3519
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3520
            "The node operator description can not be None."
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3531
            "The node operator description can not be None."
3532 3533
        return self.node.op().output_arg_names()

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3555 3556
class IrGraph(object):
    """
3557
    Python IrGraph. Beneath it is a core.Graph, which is used for
3558
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3559 3560
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3561 3562 3563 3564
    """

    def __init__(self, graph, for_test=False):
        """
3565 3566
        Construct an IrGraph using core.Graph.

3567 3568 3569 3570 3571 3572 3573 3574 3575
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3576 3577 3578 3579
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3580 3581 3582
        Warns:
            The method only clones the graph structure, not its attributes.

3583 3584 3585
        Returns:
            IrGraph: A new and duplicated graph.
        """
3586
        g = self.graph.clone()
3587 3588
        return IrGraph(g, self._for_test)

3589
    def is_test(self):
3590 3591 3592
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3593 3594
        return self._for_test

W
WangZhen 已提交
3595
    def all_nodes(self):
3596 3597 3598
        """
        Return all nodes included in the graph as a set.
        """
3599
        return {IrNode(node) for node in self.graph.nodes()}
3600

3601
    def all_var_nodes(self):
3602 3603 3604
        """
        Return all variable nodes included in the graph as a set.
        """
3605
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3606

3607
    def all_persistable_nodes(self):
3608 3609 3610
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3611 3612 3613 3614 3615
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3616
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3617

3618
    def all_op_nodes(self):
3619 3620 3621
        """
        Return all operator nodes included in the graph as a set.
        """
3622
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3623

3624
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3636
            IrVarNode: the created persistable variable node.
3637
        """
3638 3639 3640 3641 3642
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3643
        return IrVarNode(self.graph.create_var_node(var_desc))
3644 3645

    def create_var_node(self, name, var_type, shape, var_dtype):
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3657
            IrVarNode: the created variable node.
3658 3659
        """

3660 3661 3662 3663
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3664
        return IrVarNode(self.graph.create_var_node(var_desc))
3665

3666 3667 3668 3669 3670 3671
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3672
    def create_var_node_from_desc(self, var_desc):
3673 3674 3675 3676 3677 3678 3679 3680
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3681
            IrVarNode: the created variable node.
3682
        """
3683
        return IrVarNode(self.graph.create_var_node(var_desc))
3684 3685

    def create_op_node(self, op_type, attrs, inputs, outputs):
3686 3687 3688 3689 3690 3691 3692
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3693
            outputs(dict): the outputs of the operator node.
3694 3695

        Returns:
3696
            IrOpNode: the created operator node.
3697
        """
3698 3699
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3700
        for attr, value in six.iteritems(attrs):
3701
            self._update_desc_attr(op_desc, attr, value)
3702
        for input_name, var_nodes in six.iteritems(inputs):
3703 3704 3705 3706
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3707
        for output_name, var_nodes in six.iteritems(outputs):
3708 3709 3710 3711
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3712
        return IrOpNode(self.graph.create_op_node(op_desc))
3713 3714

    def create_op_node_from_desc(self, op_desc):
3715 3716 3717 3718 3719 3720 3721
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3722
            IrOpNode: the created operator node.
3723
        """
3724
        return IrOpNode(self.graph.create_op_node(op_desc))
3725 3726

    def update_input_link(self, old_input_node, new_input_node, op_node):
3727 3728 3729 3730
        """
        Update the input's link of a operator node.

        Args:
3731 3732 3733
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3734
        """
3735
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3736 3737
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3738 3739 3740 3741
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3742
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3743

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3754 3755
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3756 3757 3758 3759 3760 3761
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3762
    def link_to(self, node_in, node_out):
3763 3764 3765 3766
        """
        Connect two nodes.

        Args:
3767 3768
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3769
        """
3770
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3771
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3772 3773
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3774 3775

    def safe_remove_nodes(self, remove_nodes):
3776 3777 3778 3779 3780 3781 3782
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3783
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3784 3785 3786 3787
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3788 3789
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3790

Z
Zhen Wang 已提交
3791 3792 3793 3794 3795 3796 3797 3798
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3799
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3800 3801 3802 3803
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3804
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3805 3806 3807
                        ]
                    else:
                        var_nodes[each_var_name].append(
3808 3809
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3810 3811
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3812
    def has_circle(self):
3813 3814 3815 3816 3817 3818
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3819 3820 3821
        return core.has_circle(self.graph)

    def graph_num(self):
3822 3823 3824 3825 3826 3827
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3828 3829 3830
        return core.graph_num(self.graph)

    def topology_sort(self):
3831 3832 3833
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3834
        Notes: the `graph` can not contain a circle.
3835 3836

        Returns:
Z
Zhen Wang 已提交
3837
            list(IrNode): nodes in topology order.
3838
        """
3839
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3840
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3841 3842

    def build_adjacency_list(self):
3843 3844 3845 3846
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3847
            dict{IrNode: set(IrNode)}: the adjacency list.
3848
        """
3849 3850 3851 3852 3853
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3854

3855 3856 3857 3858 3859 3860 3861 3862
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3863
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3864 3865 3866 3867 3868
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3869 3870 3871
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3872
                                          + ' -o ' + pdf_save_path, shell=True)
3873 3874 3875 3876 3877
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3878
        remove_ctr_vars = set()
3879
        if remove_ctr_var:
3880
            for node in self.all_var_nodes():
3881 3882 3883
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3884 3885
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3886 3887
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3888 3889 3890 3891 3892 3893
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3894 3895 3896 3897
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3898 3899
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3900 3901 3902 3903 3904 3905 3906
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3907 3908 3909
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3910
        WARN: When the graph includes backward operator nodes, the
3911 3912 3913 3914 3915 3916
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3917
        convert_pass = core.get_pass('graph_to_program_pass')
3918 3919
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3920 3921 3922 3923
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3951
class Program(object):
D
dzhwinter 已提交
3952
    """
3953
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3954
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3955
    it will contain nested block.
3956

J
Jiabin Yang 已提交
3957 3958 3959
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3960

J
Jiabin Yang 已提交
3961
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3962
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3963 3964 3965 3966 3967 3968 3969
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3970
    **Notes**:
3971 3972 3973
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3974 3975

    Returns:
J
Jiabin Yang 已提交
3976
        Program: An empty Program.
D
dzhwinter 已提交
3977 3978

    Examples:
3979 3980
        .. code-block:: python

3981 3982 3983 3984
            import paddle
            import paddle.static as static

            paddle.enable_static()
3985

3986 3987 3988 3989 3990 3991
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
                z = static.nn.fc(name="fc", input=x, size=10, act="relu")
3992 3993 3994

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3995 3996 3997

    """

3998 3999
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4000 4001
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4002 4003
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4004
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4005
        self.__op_role_var = []
T
tangwei12 已提交
4006

4007 4008
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4009
        self._is_distributed = False
4010
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4011
        self._is_chief = False
4012 4013 4014
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4015
        self._endpoints = []
4016 4017 4018
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4019
        self._trainers_endpoints = []
4020
        # the distributed lookup table names
T
tangwei12 已提交
4021
        self._distributed_lookup_table = None
4022 4023 4024

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4025 4026
        self._use_lamb = False

4027 4028 4029
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4030

4031 4032 4033
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4034
        self._program_config = None
4035

H
hutuxian 已提交
4036 4037 4038
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4039 4040 4041
        # appending gradients times
        self._appending_grad_times = 0

4042 4043 4044 4045
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4046 4047 4048
        # compiled program, i.e. Graph
        self._graph = None

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4059 4060
                import paddle
                import paddle.static as static
4061

4062 4063 4064
                paddle.enable_static()

                prog = static.default_main_program()
4065 4066 4067 4068 4069
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4070
                prog1 = static.default_main_program()
4071 4072 4073 4074 4075 4076 4077 4078
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4079
    @property
4080
    def _op_role(self):
Y
yuyang18 已提交
4081 4082 4083 4084 4085 4086 4087 4088
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4089
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4090 4091 4092 4093
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4094 4095
        return self._current_role

4096 4097
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4098 4099 4100
        self._current_role = role

    @property
4101
    def _op_role_var(self):
Y
yuyang18 已提交
4102
        """
4103
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4104

4105
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4106 4107 4108

        Notes: This is a very low-level API. Users should not use it directly.
        """
4109
        return self.__op_role_var
Y
yuyang18 已提交
4110

4111
    @signature_safe_contextmanager
4112 4113 4114 4115 4116
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4117 4118 4119 4120
        try:
            yield
        finally:
            self._current_role = tmp_role
4121

S
rename  
sneaxiy 已提交
4122
    @signature_safe_contextmanager
W
Wu Yi 已提交
4123
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4124 4125 4126 4127 4128 4129 4130
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4131
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4132 4133 4134

        Examples:

4135
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4136
            >>> p, g = backward(...)
W
Wu Yi 已提交
4137
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4138 4139
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4140
        tmp_role = self._current_role
4141
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4142

Y
yuyang18 已提交
4143 4144
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4145
        self.__op_role_var = [
4146 4147 4148
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4149 4150 4151 4152 4153
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4154

S
rename  
sneaxiy 已提交
4155
    @signature_safe_contextmanager
X
Xin Pan 已提交
4156
    def _lr_schedule_guard(self, is_with_opt=False):
4157 4158 4159 4160 4161 4162 4163
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4164 4165 4166 4167
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4168 4169 4170

        Examples:

4171
            >>> import paddle.fluid as fluid
4172 4173 4174 4175
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4176 4177

        tmp_role = self._current_role
4178
        tmp_var = self.__op_role_var
4179

4180 4181
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4182 4183
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4184
        # TODO(typhoonzero): how to set target learning rate var
4185
        self.__op_role_var = []
4186 4187 4188 4189 4190
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4191

4192
    def __str__(self):
Y
yuyang18 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4241
            program_str += '\n'
4242
        return program_str
Y
Yang Yang(Tony) 已提交
4243

F
fengjiayi 已提交
4244 4245 4246
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4247

J
Jiabin Yang 已提交
4248 4249 4250
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4251

J
Jiabin Yang 已提交
4252
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4253

H
haowang101779990 已提交
4254
        Returns:
J
Jiabin Yang 已提交
4255
            str: The debug string describe current Program.
Y
yuyang18 已提交
4256 4257

        Raises:
J
Jiabin Yang 已提交
4258
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4259

4260 4261 4262
        Examples:
            .. code-block:: python

4263 4264 4265 4266
                import paddle
                import paddle.static as static

                paddle.enable_static()
4267

4268 4269 4270
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4271
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4272
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4273
                print("program string without detail: {}".format(prog_string))
4274
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4275
        """
4276 4277 4278 4279 4280 4281 4282 4283 4284
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4285 4286 4287 4288 4289 4290
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4291 4292
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4293 4294
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4295

W
Wu Yi 已提交
4296
    def _get_desc(self):
Y
yuyang18 已提交
4297 4298 4299 4300 4301 4302 4303
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4304 4305
        return self.desc

X
version  
Xin Pan 已提交
4306 4307 4308
    def _version(self):
        return self.desc._version()

4309
    def clone(self, for_test=False):
Y
yuyang18 已提交
4310
        """
4311 4312 4313 4314
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4315

4316
        Create a new Program with forward content of original one when ``for_test=True``.
4317
        Create a new Program as same as the original one when ``for_test=False``.
4318

4319
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4320 4321 4322
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4323

4324 4325
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4326 4327
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4328
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4329

J
Jiabin Yang 已提交
4330
        For Example:
4331
          ::
L
Luo Tao 已提交
4332

4333 4334 4335 4336 4337 4338 4339 4340
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(input=img, size=10, act='relu')
            loss = paddle.mean(pred)
4341
            # Here we use clone before Momentum
4342 4343
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4344
            optimizer.minimize(loss)
4345

J
Jiabin Yang 已提交
4346
        Args:
4347

4348 4349
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4350

J
Jiabin Yang 已提交
4351
        Returns:
4352
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4353

Y
yuyang18 已提交
4354 4355 4356

        Examples:

4357 4358 4359 4360 4361 4362 4363
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4380
            1. To clone a test program, the sample code is:
4381 4382 4383
                .. code-block:: python

                    import six
4384 4385 4386 4387 4388 4389
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4402 4403
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4404 4405 4406

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4407 4408 4409 4410 4411 4412 4413 4414 4415
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
                            hidden = static.nn.fc(input=img, size=200, act='relu')
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
                                input=static.nn.fc(hidden, size=10, act='softmax'),
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4416
                            test_program = train_program.clone(for_test=True)
4417
                    print_prog(test_program)
J
Jiabin Yang 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4427 4428 4429
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4430 4431 4432
                            sgd.minimize(avg_loss)


4433
            2. The clone method can be avoid if you create program for training and program for testing individually.
4434 4435 4436
                .. code-block:: python

                    import six
4437 4438 4439 4440 4441 4442
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4454

4455
                    def network():
4456 4457 4458 4459 4460 4461 4462
                        img = static.data(name='image', shape=[None, 784])
                        hidden = static.nn.fc(input=img, size=200, act='relu')
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
                            input=static.nn.fc(hidden, size=10, act='softmax'),
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4463 4464
                        return avg_loss

4465 4466 4467 4468 4469
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4470
                            avg_loss = network()
4471
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4472
                            sgd.minimize(avg_loss)
4473
                    # the test startup program is not used.
4474 4475
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4476 4477
                            avg_loss = network()
                    print_prog(test_program_2)
4478

4479
            The two code snippets above will generate and print same programs.
4480
        """
4481 4482 4483 4484 4485

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4486
        pruned_origin_block_id_map = None
4487
        if for_test:
4488 4489 4490 4491 4492 4493 4494 4495 4496
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4497
        else:
4498
            p = Program()
G
gongweibao 已提交
4499 4500
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4501
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4502 4503 4504
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4505 4506

            p._current_role = self._current_role
4507
            p.__op_role_var = self.__op_role_var
4508
            p._appending_grad_times = self._appending_grad_times
4509 4510
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4511

4512 4513
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4514
            p._sync_with_cpp()
4515

W
Wu Yi 已提交
4516
        p._copy_param_info_from(self)
4517
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4518
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4519
        return p
4520

4521
    def _prune(self, targets):
Y
yuyang18 已提交
4522 4523 4524 4525 4526 4527 4528 4529
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4530
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4531 4532 4533 4534
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4535
        """
4536
        return self._prune_with_input([], targets)
4537 4538

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4539
        """
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4550
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4551 4552 4553 4554 4555 4556
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4557 4558 4559 4560
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4561 4562
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4563 4564
        if not isinstance(targets, list):
            targets = [targets]
4565 4566 4567

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4568 4569 4570
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4571

4572 4573 4574 4575
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4576 4577 4578
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4579
                else:
4580 4581 4582
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4583 4584 4585 4586 4587 4588 4589 4590

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4607 4608 4609 4610 4611 4612 4613 4614
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4615

4616
        res = Program()
4617 4618 4619
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4620 4621 4622
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4623
        res._sync_with_cpp()
4624 4625 4626 4627 4628

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4629 4630
        return res

X
Xin Pan 已提交
4631
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4632
        """
F
fengjiayi 已提交
4633 4634 4635 4636 4637
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4638
        3. change the :code:`is_test`
Y
yuyang18 已提交
4639 4640 4641
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4642
        Args:
X
Xin Pan 已提交
4643 4644
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4645

Y
yuyang18 已提交
4646 4647 4648 4649 4650 4651
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4652
        res = Program()
4653
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4654 4655 4656 4657

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4658
        if prune_read_op:
4659 4660 4661 4662 4663 4664 4665 4666 4667
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4668
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4669 4670

        # change all `is_test` attributes to True
M
minqiyang 已提交
4671
        for i in six.moves.range(res.desc.num_blocks()):
4672
            block = res.desc.block(i)
M
minqiyang 已提交
4673
            for j in six.moves.range(block.op_size()):
4674 4675
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4676
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4677 4678 4679
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4680
        res._sync_with_cpp()
4681 4682
        return res

4683 4684
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4685
        """
4686 4687 4688
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4689

4690 4691
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4692

J
Jiabin Yang 已提交
4693
        Args:
Y
yuyang18 已提交
4694

J
Jiabin Yang 已提交
4695
            binary_str_type (str): the binary prootbuf string.
4696

J
Jiabin Yang 已提交
4697 4698
        Returns:
            Program: A deserialized Program.
4699 4700 4701 4702

        Examples:
            .. code-block:: python

4703 4704 4705 4706
                import paddle
                import paddle.static as static

                paddle.enable_static()
4707

4708 4709 4710 4711
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4712

4713
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4714

4715
                    z = paddle.matmul(x=x, y=y)
4716

4717 4718
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4719

4720
                    print(static.default_main_program())
4721
                    print(prog_restored)
Y
yuyang18 已提交
4722
        """
4723 4724
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4725
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4726
        p._sync_with_cpp()
4727
        return p
Y
Yu Yang 已提交
4728

4729
    @staticmethod
4730
    def _construct_from_desc(desc):
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4746 4747
    @property
    def random_seed(self):
Y
yuyang18 已提交
4748
        """
J
Jiabin Yang 已提交
4749
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4750 4751
        the random seed from random device.

4752 4753
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4754 4755 4756

        Returns:
            int64: Random seed in current Program
4757

4758 4759 4760 4761

        Examples:
            .. code-block:: python

4762 4763 4764
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4765

4766 4767 4768
                paddle.enable_static()

                prog = static.default_main_program()
4769
                random_seed = prog.random_seed
4770
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4771 4772 4773
                print(random_seed)
                ## 0
                ## the default random seed is 0
4774 4775

                # Here we need to set random seed before we use fluid.layers.dropout
4776
                prog.random_seed = 1
4777
                z_var = F.dropout(x_var, 0.7)
4778

4779
                print(prog.random_seed)
4780 4781
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4782
        """
D
dzhwinter 已提交
4783 4784
        return self._seed

Q
qiaolongfei 已提交
4785 4786
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4787
        """
4788 4789
        The number of :ref:`api_guide_Block_en`  in this Program.

4790 4791
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4792 4793 4794

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4795

4796 4797 4798 4799

        Examples:
            .. code-block:: python

4800 4801 4802 4803
                import paddle
                import paddle.static as static

                paddle.enable_static()
4804

4805
                prog = static.default_main_program()
4806 4807
                num_blocks = prog.num_blocks
                print(num_blocks)
4808

4809 4810
                # print result:
                # 1
Y
yuyang18 已提交
4811
        """
Q
qiaolongfei 已提交
4812 4813
        return self.desc.num_blocks()

D
dzhwinter 已提交
4814 4815 4816
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4817 4818 4819
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4820 4821
        self._seed = seed

Y
Yu Yang 已提交
4822
    def __repr__(self):
4823
        return self.__str__()
4824

Y
Yu Yang 已提交
4825
    def global_block(self):
Y
yuyang18 已提交
4826
        """
4827 4828
        .. note::
            This API has no effect in Dygraph mode.
4829 4830 4831

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4832 4833
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4834

4835 4836 4837 4838

        Examples:
            .. code-block:: python

4839 4840 4841 4842
                import paddle
                import paddle.static as static

                paddle.enable_static()
4843

4844
                prog = static.default_main_program()
4845 4846
                gb_block = prog.global_block()
                print(gb_block)
4847

Y
yuyang18 已提交
4848
        """
Y
Yu Yang 已提交
4849 4850
        return self.blocks[0]

Q
Qiao Longfei 已提交
4851
    def block(self, index):
Y
yuyang18 已提交
4852
        """
4853 4854
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4855

4856 4857
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4858 4859
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4860

J
Jiabin Yang 已提交
4861 4862
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4863 4864 4865 4866

        Examples:
            .. code-block:: python

4867 4868 4869 4870
                import paddle
                import paddle.static as static

                paddle.enable_static()
4871

4872
                prog = static.default_main_program()
4873 4874
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4875
        """
Q
Qiao Longfei 已提交
4876 4877
        return self.blocks[index]

Y
Yu Yang 已提交
4878
    def current_block(self):
Y
yuyang18 已提交
4879
        """
4880 4881
        .. note::
            This API has no effect in Dygraph mode.
4882

J
Jiabin Yang 已提交
4883 4884
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4885

J
Jiabin Yang 已提交
4886 4887
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4888

4889 4890 4891
        Examples:
            .. code-block:: python

4892 4893 4894 4895
                import paddle
                import paddle.static as static

                paddle.enable_static()
4896

4897
                prog = static.default_main_program()
4898 4899
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4900
        """
Y
Yu Yang 已提交
4901 4902
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4903
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4904 4905 4906 4907 4908
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4909

Y
yuyang18 已提交
4910 4911 4912 4913 4914
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4915
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4916 4917 4918
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4919 4920 4921 4922
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4923
    def _rollback(self):
Y
yuyang18 已提交
4924 4925 4926 4927 4928
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4929 4930
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4931
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4942 4943 4944
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4945
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4946

W
Wu Yi 已提交
4947
    def _copy_param_info_from(self, other):
4948
        """
4949
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4950

Y
yuyang18 已提交
4951 4952 4953
        Notes: This is a very low level API. Users should not invoke it
        directly.

4954 4955 4956 4957 4958 4959 4960
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4961 4962 4963
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4964

W
Wu Yi 已提交
4965
        self.global_block()._copy_param_info_from(other.global_block())
4966

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4978 4979 4980
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4981 4982
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4983
        self._parameters_on_pservers = other._parameters_on_pservers
4984
        self._endpoints = other._endpoints
4985
        self._ps_endpoint = other._ps_endpoint
4986 4987
        self._distributed_lookup_table = other._distributed_lookup_table

4988
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4989 4990
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4991

Y
yuyang18 已提交
4992 4993 4994
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4995 4996
        Args:
            other(Program): Other program
4997 4998 4999 5000
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5001 5002 5003 5004 5005

        Returns:
            None
        """
        if not isinstance(other, Program):
5006 5007 5008
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5009

5010 5011 5012 5013 5014
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5015 5016 5017

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5018 5019
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5020
            for var in list(block.vars.values()):
5021 5022 5023 5024 5025 5026 5027
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5028

5029
    def list_vars(self):
Y
yuyang18 已提交
5030
        """
5031
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5032

J
Jiabin Yang 已提交
5033
        Returns:
5034
            iterable Tensors: The Generator will yield every Tensor in this program.
5035 5036 5037 5038

        Examples:
            .. code-block:: python

5039 5040
                import paddle
                import paddle.static as static
5041

5042 5043 5044 5045 5046
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5047 5048
                for var in prog.list_vars():
                    print(var)
5049 5050 5051
                
                # var img : fluid.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5052
        """
5053
        for each_block in self.blocks:
5054
            for each_var in list(each_block.vars.values()):
5055 5056
                yield each_var

5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5067 5068 5069 5070
                import paddle
                import paddle.static as static

                paddle.enable_static()
5071

5072 5073 5074 5075 5076
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
                hidden = static.nn.fc(input=data, size=10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5077 5078 5079 5080 5081 5082 5083

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5084 5085
                # persist trainable param fc_0.w_0 : fluid.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : fluid.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5096

5097
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5098
class Parameter(Variable):
5099
    """
5100
    Parameter is derived from Variable. A parameter is a persistable
5101
    Variable, and will be updated by optimizers after each iteration.
5102
    The training of a neural network is essentially the updating of
5103 5104
    its parameters.

5105
    Relative to a general Variable, a Parameter has several its own
5106 5107
    member variables:

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5118 5119
    """

5120 5121 5122 5123 5124 5125
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5126 5127 5128 5129 5130
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5131
        if len(shape) == 0:
5132 5133
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5134 5135 5136

        for each in shape:
            if each < 0:
5137 5138 5139
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5140 5141

        Variable.__init__(
5142 5143 5144 5145 5146 5147 5148
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5149 5150 5151 5152
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5153 5154
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5155
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5156

5157 5158
        self.is_distributed = False

F
fengjiayi 已提交
5159
    def __str__(self):
5160
        return self._to_readable_code()
F
fengjiayi 已提交
5161

F
update  
fengjiayi 已提交
5162 5163 5164
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5165

F
update  
fengjiayi 已提交
5166 5167 5168 5169 5170 5171 5172 5173
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5174 5175 5176 5177 5178 5179 5180 5181 5182
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5183 5184 5185 5186 5187 5188
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5189
                               "do_model_average")
F
update  
fengjiayi 已提交
5190
            for attr_name in additional_attr:
5191 5192
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5193 5194
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5195 5196 5197 5198
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5199

5200 5201
class ParamBase(core.VarBase):
    """
5202 5203 5204
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5205 5206 5207
    The training of a neural network is essentially the updating of
    its ParamBase.

5208
    Relative to a general Tensor, a ParamBase has several its own
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5251 5252
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5253 5254 5255 5256 5257 5258 5259 5260

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5261
        # self.block = default_main_program().global_block()
5262

5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5276
    def __str__(self):
5277
        """
5278
        Convert a ParamBase object to a readable string.
5279

5280
        Returns(str): A readable string.
5281 5282 5283 5284

        Examples:
            .. code-block:: python

5285
                import paddle
5286
                paddle.disable_static()
5287 5288 5289 5290 5291 5292 5293 5294
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5295
                paddle.enable_static()
5296
        """
5297 5298
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5299 5300 5301 5302

    __repr__ = __str__


Y
Yu Yang 已提交
5303
# program is a global instance.
Y
Yu Yang 已提交
5304 5305
_main_program_ = Program()
_startup_program_ = Program()
5306

5307

5308
def default_startup_program():
Y
Yu Yang 已提交
5309
    """
Y
yuyang18 已提交
5310 5311
    Get default/global startup program.

5312 5313 5314 5315 5316
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5317

5318 5319
    Returns:
        Program: current default startup program.
5320

5321
    Returns type: 
5322 5323 5324 5325

    Examples:
        .. code-block:: python

5326
            import paddle
5327

5328 5329 5330 5331 5332 5333 5334
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program=main_program, startup_program=startup_program):
                x = paddle.data(name="x", shape=[-1, 784], dtype='float32')
                y = paddle.data(name="y", shape=[-1, 1], dtype='int32')
                z = paddle.static.nn.fc(name="fc", input=x, size=10, act="relu")
5335

5336 5337
                print("main program is: {}".format(paddle.static.default_main_program()))
                print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5338
    """
Y
Yu Yang 已提交
5339
    return _startup_program_
5340

5341

5342
def default_main_program():
Y
Yu Yang 已提交
5343
    """
5344
    This API can be used to get ``default main program`` which store the 
5345
    descriptions of Ops and tensors.
5346
    
5347 5348
    For example ``z = paddle.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5349

5350 5351
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5352
    :code:`default_main_program` when the program is not specified.
5353

5354
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5355
    
Y
Yu Yang 已提交
5356
    Returns:
5357
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5358 5359 5360 5361

    Examples:
        ..  code-block:: python

5362 5363 5364
            import paddle
            
            paddle.enable_static()
5365
            # Sample Network:
5366 5367
            data = paddle.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = paddle.data(name='label', shape=[None, 1], dtype='int64')
5368
            
5369 5370 5371 5372 5373 5374
            conv1 = paddle.static.nn.conv2d(data, 4, 5, 1, act=None)
            bn1 = paddle.static.nn.batch_norm(conv1, act='relu')
            pool1 = paddle.nn.functional.pool2d(bn1, 2, 'max', 2)
            conv2 = paddle.static.nn.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = paddle.static.nn.batch_norm(conv2, act='relu')
            pool2 = paddle.nn.functional.pool2d(bn2, 2, 'max', 2)
5375
            
5376 5377
            fc1 = paddle.static.nn.fc(pool2, size=50, act='relu')
            fc2 = paddle.static.nn.fc(fc1, size=102, act='softmax')
5378
            
5379 5380 5381
            loss = paddle.nn.functional.loss.cross_entropy(input=fc2, label=label)
            loss = paddle.mean(loss)
            opt = paddle.optimizer.Momentum(
5382 5383
                learning_rate=0.1,
                momentum=0.9,
5384
                weight_decay=paddle.regularizer.L2Decay(1e-4))
5385 5386
            opt.minimize(loss)
            
5387
            #print the number of blocks in the program, 1 in this case
5388
            print(paddle.static.default_main_program().num_blocks) #[1]
5389 5390

            #print the description of variable 'image'
5391
            print(paddle.static.default_main_program())
5392

Y
Yu Yang 已提交
5393
    """
Y
Yu Yang 已提交
5394
    return _main_program_
Y
Yu Yang 已提交
5395 5396 5397 5398 5399


def switch_main_program(program):
    """
    Switch the main program to a new program.
5400

Y
Yu Yang 已提交
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5415
    Switch the startup program to a new program
Y
Yu Yang 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5428
@signature_safe_contextmanager
Y
Yu Yang 已提交
5429 5430
def program_guard(main_program, startup_program=None):
    """
5431 5432
    :api_attr: Static Graph

5433 5434 5435
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5436

G
guofei 已提交
5437
    Args:
5438 5439
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5440 5441 5442 5443
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5444
    Examples:
5445 5446
       .. code-block:: python
       
5447
          import paddle
Y
yuyang18 已提交
5448

5449 5450 5451 5452 5453 5454
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
              hidden = paddle.static.nn.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5455 5456 5457

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5458

Y
Yu Yang 已提交
5459
    Examples:
5460
       .. code-block:: python
Y
yuyang18 已提交
5461

5462
          import paddle
5463

5464 5465 5466 5467 5468
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5469
    
Y
Yu Yang 已提交
5470
    """
5471
    from .data_feeder import check_type
5472 5473
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5474 5475
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5476
        check_type(startup_program, 'startup_program', Program,
5477
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5478
        startup_program = switch_startup_program(startup_program)
5479 5480 5481 5482 5483 5484
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5485 5486


W
Wu Yi 已提交
5487
def _get_var(name, program=None):
X
xuwei06 已提交
5488
    """
Y
yuyang18 已提交
5489
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5490

X
xuwei06 已提交
5491 5492 5493
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5494
        If None, default_global_program() will be used.
X
xuwei06 已提交
5495 5496 5497 5498 5499 5500 5501

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5502
    assert isinstance(program, Program)
X
xuwei06 已提交
5503 5504

    return program.global_block().var(name)
5505 5506


S
rename  
sneaxiy 已提交
5507
@signature_safe_contextmanager
L
lujun 已提交
5508 5509 5510 5511
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5512
    core._switch_tracer(tracer)
M
minqiyang 已提交
5513

5514 5515 5516 5517 5518
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5519 5520


S
rename  
sneaxiy 已提交
5521
@signature_safe_contextmanager
L
lujun 已提交
5522
def _dygraph_place_guard(place):
5523 5524 5525
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5526

5527 5528 5529
    try:
        yield
    finally:
5530
        _global_expected_place_ = tmp_place
5531 5532 5533 5534


def load_op_library(lib_filename):
    """
5535 5536
    :api_attr: Static Graph
    
5537 5538 5539
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5540
    Please note, the type of custom operators can't have the same type
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5607 5608 5609 5610 5611
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5612 5613 5614 5615
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5616 5617
    if index:
        device = ":".join([device, index])
5618
    pre_device = switch_device(device)
5619 5620 5621 5622
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value