math.py 92.6 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26 27
from paddle.tensor import cast
import paddle
28
from ..fluid import layers
29
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
30 31
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
33
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
34 35 36

# TODO: define math functions
# yapf: disable
37 38 39 40
from ..fluid.layers import abs    # noqa: F401
from ..fluid.layers import acos    # noqa: F401
from ..fluid.layers import asin    # noqa: F401
from ..fluid.layers import ceil    # noqa: F401
41
from ..fluid.layers import ceil_    # noqa: F401
42 43 44 45 46
from ..fluid.layers import cos    # noqa: F401
from ..fluid.layers import tan    # noqa: F401
from ..fluid.layers import sinh    # noqa: F401
from ..fluid.layers import cosh    # noqa: F401
from ..fluid.layers import exp    # noqa: F401
47
from ..fluid.layers import exp_    # noqa: F401
R
ronnywang 已提交
48
from ..fluid.layers import expm1    # noqa: F401
49
from ..fluid.layers import floor    # noqa: F401
50
from ..fluid.layers import floor_    # noqa: F401
51 52
from ..fluid.layers import log    # noqa: F401
from ..fluid.layers import reciprocal    # noqa: F401
53
from ..fluid.layers import reciprocal_    # noqa: F401
54
from ..fluid.layers import round    # noqa: F401
55
from ..fluid.layers import round_    # noqa: F401
56
from ..fluid.layers import rsqrt    # noqa: F401
57
from ..fluid.layers import rsqrt_    # noqa: F401
58 59 60 61 62 63
from ..fluid.layers import scale    # noqa: F401
from ..fluid.layers import square    # noqa: F401
from ..fluid.layers import stanh    # noqa: F401
from ..fluid.layers import atan    # noqa: F401
from ..fluid.layers import erf    # noqa: F401
from ..fluid.layers import sqrt    # noqa: F401
64
from ..fluid.layers import sqrt_    # noqa: F401
65
from ..fluid.layers import sin    # noqa: F401
66
from ..fluid.layers import lgamma    # noqa: F401
67 68

from ..fluid.layers import multiplex    # noqa: F401
G
guofei 已提交
69
from ..fluid import layers
W
wanghuancoder 已提交
70
from paddle import _C_ops
71

72 73
__all__ = []

74 75 76 77 78 79 80 81 82 83 84 85 86
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

87 88 89 90 91 92 93 94

@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
    _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
W
wanghuancoder 已提交
95
    return _C_ops.scale_(x, 'scale',
96 97 98 99
                            float(_scale), 'bias',
                            float(bias), 'bias_after_scale', bias_after_scale)


100
def pow(x, y, name=None):
101
    """
102
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
103

104 105
    .. math::
        out = x^{y} 
106

107 108
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
109 110


111 112
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
113
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
114 115
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
116
    Returns:
117
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
118 119 120

    Examples:

121
        ..  code-block:: python
122 123 124

            import paddle

125 126 127 128 129 130 131 132 133 134 135 136
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

137
            # example 2: y is a Tensor
138
            y = paddle.to_tensor([2], dtype='float32')
139
            res = paddle.pow(x, y)
140 141 142
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
143 144

    """
145
    # in dynamic graph mode
W
WuHaobo 已提交
146
    if in_dygraph_mode():
147
        if isinstance(y, (int, float)):
W
wanghuancoder 已提交
148
            return _C_ops.pow(x, 'factor', y)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
167
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
168 169 170
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
171 172 173



174 175 176 177 178 179 180
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
W
wanghuancoder 已提交
181
    op = getattr(_C_ops, op_name)
182 183 184 185 186 187 188 189 190 191 192 193
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

194 195
    out = helper.kwargs.get('out', None)

196 197 198 199 200 201 202 203 204 205 206 207
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
208 209 210 211 212 213

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
214 215 216 217 218 219 220 221 222 223 224

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
225
def add(x, y, name=None):
226
    """
227
    Examples:
228 229 230 231

    ..  code-block:: python

        import paddle
232 233
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
234
        z = paddle.add(x, y)
235
        print(z)  # [3., 8., 6. ]
236 237

    """
238

239
    if in_dygraph_mode():
W
wanghuancoder 已提交
240
        return _C_ops.elementwise_add(x, y)
241

242
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))
243 244


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, op_name=op_type)
    return out


263 264
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
265
    Substract two tensors element-wise. The equation is:
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, act=act, op_name='elementwise_sub_')
    return out


342
def divide(x, y, name=None):
343
    """
344
    Divide two tensors element-wise. The equation is:
345

346 347
    .. math::
        out = x / y
348

349 350
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
351

352 353 354 355
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
356

357
    Returns:
358
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
359

360
    Examples:
361

362
        ..  code-block:: python
363

364
            import paddle
365

366 367
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
368
            z = paddle.divide(x, y)
369
            print(z)  # [2., 0.6, 2.]
370

371 372 373 374 375 376 377
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
378

379
    return _elementwise_op(LayerHelper(op_type, **locals()))
380 381


382 383 384
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
385

386 387
    .. math::
        out = x // y
388

389 390
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
391

392 393 394 395
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
396

397 398
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
399

400
    Examples:
401

402
        ..  code-block:: python
403

404
            import paddle
405

406 407
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
408
            z = paddle.floor_divide(x, y)
409
            print(z)  # [2, 0, 2, 2]
410

411 412 413 414 415 416
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
417

418
    return _elementwise_op(LayerHelper(op_type, **locals()))
419 420


421
def remainder(x, y, name=None):
422
    r"""
423 424 425
    Mod two tensors element-wise. The equation is:

    .. math::
426

427 428 429
        out = x \% y

    **Note**:
430
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
431 432

    Args:
W
WangXi 已提交
433 434
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
435 436 437
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
438
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
439 440 441 442 443 444 445

    Examples:

        ..  code-block:: python

            import paddle

446 447
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
448
            z = paddle.remainder(x, y)
W
WangXi 已提交
449
            print(z)  # [0, 3, 2, 1]
450 451 452

    """
    op_type = 'elementwise_mod'
453 454 455
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
456
            x, y, axis=axis, op_name=op_type)
457 458 459 460

    return _elementwise_op(LayerHelper(op_type, **locals()))


461 462
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
463 464


465
def multiply(x, y, name=None):
466
    """
467
    multiply two tensors element-wise. The equation is:
468

469 470
    .. math::
        out = x * y
471

472 473
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
474

475 476 477 478
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
479

480
    Returns:
481
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
482

483 484 485 486 487 488
    Examples:

        ..  code-block:: python

            import paddle

489 490
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
491
            res = paddle.multiply(x, y)
492
            print(res) # [[5, 12], [21, 32]]
493

494
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
495 496 497
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
498 499 500 501

    """
    op_type = 'elementwise_mul'
    act = None
502
    axis = -1
503

504 505 506 507
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

508 509 510 511 512
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

513 514
    return _elementwise_op(LayerHelper(op_type, **locals()))

515
def maximum(x, y, name=None):
516
    """
W
Wei Shengyu 已提交
517
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
518

519 520
    .. math::
        out = max(x, y)
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
565 566
    """
    op_type = 'elementwise_max'
567
    axis = -1
568 569 570 571 572 573
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

574
def minimum(x, y, name=None):
575
    """
W
Wei Shengyu 已提交
576
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
577

578 579
    .. math::
        out = min(x, y)
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
624 625
    """
    op_type = 'elementwise_min'
626
    axis = -1
627 628 629 630 631
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
632

633 634
for func in [
        add,
635
        multiply
636
]:
637
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
638 639
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
640 641 642 643 644 645 646
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
647 648
        op_proto,
        additional_args_lines=additional_args_lines,
649
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
650
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
651
        }) + """\n""" + str(func.__doc__)
652

Y
Yang Zhang 已提交
653

654
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
655 656 657 658
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
659 660 661
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
662
            Tensor with a single element, otherwise must be in the
663 664 665 666 667 668 669
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
670
            value is False.
671
        name (str, optional): The default value is None. Normally there is no need for
672 673 674
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
675 676
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
677 678

    Raises:
679 680
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
681
        TypeError: The type of :attr:`axis` must be int, list or tuple.
682

683 684 685 686
    Examples:
        .. code-block:: python

            import paddle
687

688
            # x is a Tensor with following elements:
689 690 691
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
692 693
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
694
            out1 = paddle.sum(x)  # [3.5]
695 696 697
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
698

699
            # y is a Tensor with shape [2, 2, 2] and elements as below:
700 701 702
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
703 704
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
705 706
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
707
    """
708 709 710 711 712 713 714 715 716 717 718
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

719 720 721
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
722 723
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
724 725 726
                dtype_flag = True

    if in_dygraph_mode():
727
        axis = axis if axis != None and axis != [] else [0]
728
        if dtype_flag:
W
wanghuancoder 已提交
729
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
730 731
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
732 733
                                       convert_np_dtype_to_dtype_(dtype))
        else:
W
wanghuancoder 已提交
734
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
735
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    if dtype is not None:
        if dtype in ['float64', 'int64']:
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
                attrs.update({
                    'in_dtype': x.dtype,
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })

752
    check_variable_and_dtype(
753
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
754 755 756 757 758 759 760 761 762 763 764

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

765 766
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

767 768 769 770 771
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
772
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
773 774
    helper.append_op(
        type='reduce_sum',
775
        inputs={'X': x},
776 777 778
        outputs={'Out': out},
        attrs=attrs)
    return out
779

780

781
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
782
def add_n(inputs, name=None):
783
    """
S
Steffy-zxf 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
819 820

    Args:
821
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
822
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
823 824 825 826
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
827
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
828 829 830 831 832 833

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
834 835 836 837 838
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
839
    """
S
Steffy-zxf 已提交
840 841 842
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
W
wanghuancoder 已提交
843
        return _C_ops.sum(inputs, 'use_mkldnn', False)
844

S
Steffy-zxf 已提交
845 846
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
847 848 849 850
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
851
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
852 853
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
854
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
855 856


857 858 859 860 861 862 863 864 865 866 867
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
    if in_dygraph_mode():
W
wanghuancoder 已提交
897
        return _C_ops.trunc(input)
898 899 900 901 902 903 904 905 906 907 908 909 910 911
    else:
        inputs = {"X": input}
        attrs = {}

        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
        return out



W
WuHaobo 已提交
912
def mm(input, mat2, name=None):
913
    """
S
swtkiwi 已提交
914

915 916 917 918 919 920 921 922 923 924
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

925 926
    This op does not support broadcasting. See paddle.matmul.

927
    Args:
928
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
929
        mat2 (Tensor): The input tensor which is a Tensor.
930 931 932 933
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
934
        Tensor: The product Tensor.
935 936 937 938 939

    Examples:
        .. code-block:: python

            import paddle
940 941 942 943 944 945 946 947
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
948

949 950
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
951
        out = _varbase_creator(dtype=input.dtype)
W
wanghuancoder 已提交
952
        _C_ops.matmul(input, mat2, out)
953
        return out
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
991
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
992 993 994 995
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
996

997

Y
yaoxuefeng 已提交
998
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1012 1013 1014
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1015
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1016
        alpha (float): Coefficient of $x*y$.
1017 1018 1019
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
1020
        Tensor: The output Tensor of addmm op.
1021 1022 1023

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1024
            
1025 1026
            import paddle

Y
yaoxuefeng 已提交
1027 1028 1029
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1030

Y
yaoxuefeng 已提交
1031
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1032

N
Noel 已提交
1033
            print(out)
1034 1035 1036
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1057
    if in_dygraph_mode():
W
wanghuancoder 已提交
1058
        out = _C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
1059 1060
        return out

1061 1062 1063 1064
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1065
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1066 1067 1068 1069 1070 1071 1072
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1073 1074


1075
def logsumexp(x, axis=None, keepdim=False, name=None):
1076
    r"""
1077
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1078

1079
    .. math::
1080
       logsumexp(x) = \\log\\sum exp(x)
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1100

1101
    Returns:
1102 1103
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1104

1105
    Examples:
1106

1107
    .. code-block:: python
1108

1109 1110
        import paddle

1111
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1112 1113
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1114 1115

    """
1116 1117 1118 1119 1120 1121 1122
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1123

1124
    if in_dygraph_mode():
W
wanghuancoder 已提交
1125
        return _C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1126

1127 1128 1129
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1130

1131
    helper = LayerHelper('logsumexp', **locals())
1132
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1133 1134 1135 1136
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1137

S
swtkiwi 已提交
1138

1139 1140
def inverse(x, name=None):
    """
1141 1142 1143 1144 1145
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1146
        x (Tensor): The input tensor. The last two
1147 1148 1149 1150 1151 1152 1153 1154
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1155
        Tensor: A Tensor holds the inverse of x. The shape and data type
1156
                        is the same as x.
1157 1158 1159 1160 1161

    Examples:
        .. code-block:: python

            import paddle
1162 1163

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1164 1165
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1166 1167 1168

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1169
        return _C_ops.inverse(x)
1170

1171 1172
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1173
                                 ['float32', 'float64'], 'inverse')
1174
        if len(x.shape) < 2:
1175 1176 1177
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1178 1179
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1180
    helper = LayerHelper('inverse', **locals())
1181
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1182
    helper.append_op(
1183
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1184 1185 1186
    return out


1187
def max(x, axis=None, keepdim=False, name=None):
1188
    """
S
swtkiwi 已提交
1189

1190
    Computes the maximum of tensor elements over the given axis.
1191 1192

    Args:
1193
        x(Tensor): A tensor, the data type is float32,
1194
            float64, int32, int64.
1195
        axis(int|list|tuple, optional): The axis along which the maximum is computed.
1196
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1197
            `x` and return a Tensor with a single element,
1198 1199 1200
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1201
            output Tensor. The result tensor will have one fewer dimension
1202
            than the `x` unless :attr:`keepdim` is true, default
1203
            value is False.
1204
        name(str, optional): The default value is None.  Normally there is no need for
1205 1206 1207
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1208
        Tensor, results of maximum on the specified axis of input tensor,
1209
        it's data type is the same as `x`.
1210 1211 1212

    Examples:
        .. code-block:: python
1213

1214
            import paddle
1215

N
Noel 已提交
1216
            # data_x is a Tensor with shape [2, 4]
1217
            # the axis is a int element
1218 1219 1220

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1221
            result1 = paddle.max(x)
N
Noel 已提交
1222
            print(result1)
1223 1224
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1225
            print(result2)
1226 1227
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1228
            print(result3)
1229 1230
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1231
            print(result4)
1232 1233 1234
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1235
            # data_y is a Tensor with shape [2, 2, 2]
1236
            # the axis is list 
1237 1238 1239

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1240
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1241
            print(result5)
1242 1243
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1244
            print(result6)
1245
            #[7. 8.]
1246 1247
    """

1248
    if axis is not None and not isinstance(axis, list):
1249 1250 1251 1252 1253 1254 1255 1256
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1257 1258 1259
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
W
wanghuancoder 已提交
1260
        return _C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
1261
                                   'reduce_all', reduce_all)
1262

1263
    helper = LayerHelper('max', **locals())
1264
    check_variable_and_dtype(
1265
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1266

1267
    out = helper.create_variable_for_type_inference(
1268
            dtype=x.dtype)
1269 1270
    helper.append_op(
        type='reduce_max',
1271
        inputs={'X': x},
1272 1273
        outputs={'Out': out},
        attrs={
1274 1275
            'dim': axis,
            'keep_dim': keepdim,
1276 1277 1278 1279
            'reduce_all': reduce_all
        })
    return out

1280
def min(x, axis=None, keepdim=False, name=None):
1281
    """
S
swtkiwi 已提交
1282

1283
    Computes the minimum of tensor elements over the given axis
1284

1285
    Args:
1286
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
1287
        axis(int|list|tuple, optional): The axis along which the minimum is computed.
1288
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1289
            `x` and return a Tensor with a single element,
1290 1291 1292
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1293
            output Tensor. The result tensor will have one fewer dimension
1294
            than the `x` unless :attr:`keepdim` is true, default
1295
            value is False.
W
WuHaobo 已提交
1296
        name(str, optional): The default value is None.  Normally there is no need for 
1297
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1298

1299
    Returns:
1300
        Tensor, results of minimum on the specified axis of input tensor,
1301
        it's data type is the same as input's Tensor.
1302

1303 1304 1305
    Examples:
        .. code-block:: python

1306
            import paddle
1307

1308
            # x is a tensor with shape [2, 4]
1309
            # the axis is a int element
1310 1311
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1312
            result1 = paddle.min(x)
N
Noel 已提交
1313
            print(result1)
1314 1315
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1316
            print(result2)
1317 1318
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1319
            print(result3)
1320 1321
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1322
            print(result4)
1323 1324 1325
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1326
            # y is a Tensor with shape [2, 2, 2]
1327
            # the axis is list 
1328 1329
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1330
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1331
            print(result5)
1332 1333
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1334
            print(result6)
1335 1336
            #[1. 2.]
    """
1337

1338
    if axis is not None and not isinstance(axis, list):
1339 1340 1341 1342 1343 1344 1345
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1346 1347
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1348
    if in_dygraph_mode():
W
wanghuancoder 已提交
1349
        return _C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1350
                                   'reduce_all', reduce_all)
1351 1352 1353 1354 1355 1356

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1357
            dtype=x.dtype)
1358 1359
    helper.append_op(
        type='reduce_min',
1360
        inputs={'X': x},
1361 1362
        outputs={'Out': out},
        attrs={
1363 1364
            'dim': axis,
            'keep_dim': keepdim,
1365 1366 1367 1368 1369
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1370
def log1p(x, name=None):
1371
    r"""
1372
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1373

1374 1375
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1376

1377
    Args:
S
Steffy-zxf 已提交
1378
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1379 1380 1381
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1382
        Tensor, the natural log of the input Tensor computed element-wise.
1383

1384 1385
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1386

1387
            import paddle
S
Steffy-zxf 已提交
1388 1389 1390 1391

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1392 1393 1394
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1395
        return _C_ops.log1p(x)
1396 1397 1398 1399 1400

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1401
    out = helper.create_variable_for_type_inference(dtype)
1402 1403
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1404

J
joejiong 已提交
1405
def log2(x, name=None):
1406
    r"""
J
joejiong 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1444
        return _C_ops.log2(x)
J
joejiong 已提交
1445 1446 1447 1448 1449 1450 1451 1452

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1453

J
joejiong 已提交
1454 1455

def log10(x, name=None):
1456
    r"""
J
joejiong 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1494
        return _C_ops.log10(x)
J
joejiong 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1505
def clip(x, min=None, max=None, name=None):
1506
    """
Y
Yang Zhang 已提交
1507
    This operator clip all elements in input into the range [ min, max ] and return
1508 1509 1510 1511
    a resulting tensor as the following equation:

    .. math::

1512
        Out = MIN(MAX(x, min), max)
1513 1514

    Args:
1515 1516
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
        min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
1517
            with shape [1] and type ``int32``, ``float32``, ``float64``.
1518
        max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
1519 1520 1521 1522 1523 1524
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1525
        Tensor: A Tensor with the same data type and data shape as input.
1526 1527 1528 1529 1530

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1531

1532
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1533 1534
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1535
            print(out1)
Y
Yang Zhang 已提交
1536 1537
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1538
            print(out2)
Y
Yang Zhang 已提交
1539 1540
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1541 1542
    """

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
1553

W
WuHaobo 已提交
1554
    if in_dygraph_mode():
1555 1556 1557 1558
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
1559 1560
        min = min_ if min is None else min
        max = max_ if max is None else max
W
wanghuancoder 已提交
1561
        return _C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1562

1563
    if min is not None:
Y
Yang Zhang 已提交
1564
        check_type(min, 'min', (float, int, Variable), 'clip')
1565 1566
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1567
                        'clip', '(When the type of min in clip is Variable.)')
1568
    if max is not None:
Y
Yang Zhang 已提交
1569
        check_type(max, 'max', (float, int, Variable), 'clip')
1570 1571
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1572
                        'clip', '(When the type of max in clip is Variable.)')
1573

1574
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
1575 1576

    inputs = {'X': x}
1577
    attrs = {'min': min_, 'max': max_}
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1591
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1592
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1593
        dtype=helper.input_dtype('x'))
1594 1595 1596 1597
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1598

W
WuHaobo 已提交
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
W
wanghuancoder 已提交
1614
    return _C_ops.clip_(x, "min", min, "max", max)
1615 1616 1617



1618
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1619
    """
1620
    **trace**
S
swtkiwi 已提交
1621

1622
    This OP computes the sum along diagonals of the input tensor x.
1623 1624

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1625

1626
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1627
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1628
    of the input tensor x.
L
Li Fuchen 已提交
1629

1630
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1631 1632 1633 1634

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1635
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1636

L
Li Fuchen 已提交
1637
    Args:
1638
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1639 1640 1641
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1642 1643 1644
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1645
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1646 1647 1648 1649 1650

    Examples:
        .. code-block:: python

            import paddle
1651

1652 1653 1654
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1655 1656 1657
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1658
    """
W
wanghuancoder 已提交
1659
    if in_dygraph_mode():
W
wanghuancoder 已提交
1660
        return _C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
1661

1662 1663
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1664 1665

    def __check_input(input, offset, dim1, dim2):
1666
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1667 1668 1669
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1670
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1671
        assert len(input_shape) >= 2,                     \
1672 1673
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1674 1675
                len(input_shape)

1676 1677
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1678

1679 1680 1681
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1682

1683 1684 1685
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1686 1687


1688 1689 1690
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1691

W
wanghuancoder 已提交
1692
    __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1693 1694
    helper = LayerHelper('trace', **locals())

1695
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1696 1697 1698

    helper.append_op(
        type='trace',
1699
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1700
        attrs={'offset': offset,
1701 1702
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1703 1704 1705
        outputs={'Out': [out]})
    return out

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
W
wanghuancoder 已提交
1771
    if in_dygraph_mode():
W
wanghuancoder 已提交
1772
        return _C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    def __check_input(input, offset, dim1, dim2):
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

    __check_input(input, offset, axis1, axis2)
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
1814
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1815
def kron(x, y, name=None):
S
swtkiwi 已提交
1816 1817 1818
    """

${comment}
F
Feiyu Chan 已提交
1819 1820

    Args:
N
Noel 已提交
1821
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1822
            float64, int32 or int64.
N
Noel 已提交
1823
        y (Tensor): the second operand of kron op, data type: float16,
1824
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1825
            with x.
1826 1827
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1828 1829 1830
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1831
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1832 1833 1834

    Examples:
        .. code-block:: python
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1847 1848
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1849
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
1850 1851 1852 1853 1854

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1855
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1856 1857
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1858 1859 1860 1861


def cumsum(x, axis=None, dtype=None, name=None):
    """
1862 1863 1864 1865
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1866 1867

    Args:
1868
        x (Tensor): The input tensor needed to be cumsumed.
1869 1870 1871 1872 1873
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1874
        Tensor, the result of cumsum operator. 
1875 1876 1877 1878 1879

    Examples:
        .. code-block:: python
            
            import paddle
1880 1881 1882
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
W
wanghuancoder 已提交
1910
            return _C_ops.cumsum(x, 'flatten', flatten)
1911
        else:
W
wanghuancoder 已提交
1912
            return _C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
1913 1914 1915 1916 1917 1918 1919 1920 1921

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1922

J
Jack Zhou 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1939

1940
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1941
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1942
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1943 1944
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1945
        return _C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1968
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1969
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1970
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1971 1972
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1973
        return _C_ops.isinf_v2(x)
J
Jack Zhou 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1996
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1997
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1998
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1999 2000
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2001
        return _C_ops.isnan_v2(x)
J
Jack Zhou 已提交
2002 2003 2004 2005 2006 2007 2008
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
2009 2010 2011 2012 2013
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
2014
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
2024
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
2034
    
G
guofei 已提交
2035 2036 2037 2038 2039 2040
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
2041 2042
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
2059 2060
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

2093
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
2094 2095 2096 2097
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2098
        return _C_ops.sign(x)
W
WangXi 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
2110
    r"""
W
WangXi 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

2129
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2130
            out = paddle.tanh(x)
N
Noel 已提交
2131
            print(out)
W
WangXi 已提交
2132 2133 2134
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2135
        return _C_ops.tanh(x)
W
WangXi 已提交
2136 2137

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2138
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2139 2140 2141 2142
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
2143

2144
@inplace_apis_in_dygraph_only
2145 2146 2147 2148 2149
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
W
wanghuancoder 已提交
2150
    return _C_ops.tanh_(x)
2151 2152


S
Steffy-zxf 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2177
        return _C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2198
            Tensor with a single element, otherwise must be in the
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2221
            # x is a bool Tensor with following elements:
2222 2223
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2224
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2225
            print(x)
S
syyxsxx 已提交
2226
            x = paddle.cast(x, 'bool')
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2241 2242
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2257 2258
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2259
        return _C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2260 2261
                                       'reduce_all', reduce_all_flag)

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2290
            Tensor with a single element, otherwise must be in the
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2313
            # x is a bool Tensor with following elements:
2314 2315
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2316
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2317
            print(x)
S
syyxsxx 已提交
2318
            x = paddle.cast(x, 'bool')
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
S
syyxsxx 已提交
2333 2334
            out4 = paddle.any(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[True], [False]]
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2349 2350
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2351
        return _C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2352 2353
                                       'reduce_all', reduce_all_flag)

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2431
        return _C_ops.conj(x)
2432 2433 2434 2435 2436 2437 2438 2439 2440

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
2441

Z
zyfncg 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
2470
        return _C_ops.digamma(x)
Z
zyfncg 已提交
2471 2472 2473 2474 2475 2476 2477

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

    return layers.scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

def atan2(y, x, name=None):
    r"""
    Element-wise arctangent of y/x with consideration of the quadrant.

    Equation:
        .. math::

          atan2(y,x)=\left\{\begin{matrix}
          & tan^{-1}(\frac{y}{x}) & x > 0 \\
          & tan^{-1}(\frac{y}{x}) + \pi & y>=0, x < 0 \\
          & tan^{-1}(\frac{y}{x}) - \pi & y<0, x < 0 \\
          & +\frac{\pi}{2} & y>0, x = 0 \\
          & -\frac{\pi}{2} & y<0, x = 0 \\
          &\text{undefined} & y=0, x = 0
          \end{matrix}\right.

    Args:
        y (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        x (Tensor): An N-D Tensor, must have the same type as `x`.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

          import paddle

          y = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
          #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
          #       [-1,  1,  1, -1])

          x = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
          #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
          #       [-1,  -1,  1, 1])

          out = paddle.atan2(y, x)
          #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
          #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])

    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
2546
        return _C_ops.atan2(y, x)
R
ronnywang 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
    else:
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')

        helper = LayerHelper('atan2', **locals())
        inputs = {'X1' : y, 'X2' : x}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
                type='atan2', inputs=inputs, outputs={'Out': out})
        return out