conv_op.cc 37.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21 22
#include "paddle/fluid/framework/op_version_registry.h"

23
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
24

25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29

H
hong 已提交
30 31 32
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/binary.h"

C
chengduoZH 已提交
33 34 35
namespace paddle {
namespace operators {

36 37
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
38 39
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
46 47
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
48
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
49
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
50 51 52 53 54 55 56 57 58
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i], 0,
        platform::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
L
liym27 已提交
59
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
60 61 62

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
63
  const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
64
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
65

66 67
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
68
      platform::errors::InvalidArgument(
69 70
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
71
          in_dims.size(), in_dims));
72

C
chengduoZH 已提交
73 74
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
75
      platform::errors::InvalidArgument(
76 77 78 79
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
80
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
81

82 83 84 85 86 87 88 89 90 91 92
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i], 0,
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
93 94 95
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
96 97 98 99 100
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
101
          in_dims.size(), in_dims, strides.size(), phi::make_ddim(strides),
102
          in_sub_stride_size));
L
liym27 已提交
103 104 105

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
106

107 108
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
109
      platform::errors::InvalidArgument(
110 111 112 113 114
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
115 116
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
117
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
118
      filter_dims[0] % groups, 0,
119
      platform::errors::InvalidArgument(
120 121 122 123
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
124
          filter_dims[0], filter_dims, groups));
W
wangxinxin08 已提交
125 126 127 128 129 130 131

  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_GT(
        filter_dims[0], 0,
        platform::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }
C
chengduoZH 已提交
132

L
liym27 已提交
133 134
  framework::DDim in_data_dims;
  if (channel_last) {
135
    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
L
liym27 已提交
136
  } else {
137
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
L
liym27 已提交
138
  }
139

140
  framework::DDim filter_data_dims =
141
      phi::slice_ddim(filter_dims, 2, filter_dims.size());
142

143
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
L
liym27 已提交
144 145 146 147 148 149 150
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
151
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
152
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
153
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
154 155
      output_shape.push_back(-1);
    } else {
156 157 158
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
159
    }
C
chengduoZH 已提交
160
  }
L
liym27 已提交
161 162 163 164
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

165
  return output_shape;
C
chengduoZH 已提交
166 167
}

168 169
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
170 171
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
172
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
173
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
174
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
175 176
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
177 178
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

179
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
180
  if (platform::CanCUDNNBeUsed(ctx)) {
181
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
182 183
  }
#endif
184
#ifdef PADDLE_WITH_MKLDNN
185 186
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
187
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
188
    layout = framework::DataLayout::kMKLDNN;
189
    customized_type_value =
190 191
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
192 193
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
194
  }
195
#endif
196

197
  if (input_data_type != framework::proto::VarType::INT8 &&
198 199
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
200 201
    auto filter_data_type =
        framework::TransToProtoVarType(ctx.Input<Tensor>("Filter")->dtype());
202 203 204 205 206 207 208 209
    PADDLE_ENFORCE_EQ(
        input_data_type, filter_data_type,
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
210
  }
H
hong 已提交
211 212 213 214 215 216 217 218
// #ifndef PADDLE_WITH_ASCEND_CL
//   if (input_data_type == framework::proto::VarType::FP16) {
//     PADDLE_ENFORCE_EQ(
//         library, framework::LibraryType::kCUDNN,
//         platform::errors::InvalidArgument(
//             "float16 can only be used when CUDNN or NPU is used"));
//   }
// #endif
W
wuhuanzhou 已提交
219 220 221 222
#if PADDLE_WITH_CUDA
  if (input_data_type == framework::proto::VarType::BF16 &&
      library == framework::LibraryType::kCUDNN) {
    PADDLE_ENFORCE_GE(
223
        platform::DnnVersion(), 8100,
W
wuhuanzhou 已提交
224 225 226 227
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
228

229 230 231
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
232 233
}

234 235 236 237 238 239 240 241 242 243 244 245 246
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
247
    // Some models may have intentionally set "AnyLayout" for conv
248 249
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
250 251
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
252 253 254 255 256 257 258
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
259
void Conv2DOpMaker::Make() {
260 261 262
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
263 264
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
265 266 267 268 269 270
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
271
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
272
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
273 274
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
275 276
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
277
           "input image channels divided by the groups.");
278 279 280 281
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
282 283
      .AsDispensable()
      .AsExtra();
284 285 286
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
287
           "Used with fuse_residual_connection fusion.")
288 289
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
290 291
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
292
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
293 294 295 296
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
297
      .SetDefault({1, 1});
C
chengduoZH 已提交
298 299
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
300 301
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
302
                            "convolution operator.")
C
chengduoZH 已提交
303
      .SetDefault({0, 0});
L
liym27 已提交
304 305 306 307 308 309
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
310 311
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
312
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
313 314 315 316
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
317
      .SetDefault(1);
C
chengduoZH 已提交
318
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
319 320
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
321
                            "convolution operator.")
C
chengduoZH 已提交
322
      .SetDefault({1, 1});
323 324 325
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
326 327
      .SetDefault(false)
      .AsExtra();
328 329
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
330 331
      .SetDefault(false)
      .AsExtra();
332 333
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
334 335
      .SetDefault(false)
      .AsExtra();
336 337 338 339
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
340 341
      .SetDefault(false)
      .AsExtra();
342 343 344 345
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
346 347
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
M
Michal Gallus 已提交
348
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
349 350
      .SetDefault(false)
      .AsExtra();
351 352
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
353 354
      .SetDefault(false)
      .AsExtra();
355 356
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
357 358
      .SetDefault(6.0f)
      .AsExtra();
359 360
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
361 362
      .SetDefault("")
      .AsExtra();
363 364
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
365 366
      .SetDefault(0.0f)
      .AsExtra();
367
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
368 369
      .SetDefault(0.0f)
      .AsExtra();
370 371 372 373
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
374 375
      .SetDefault(false)
      .AsExtra();
376
  AddAttr<bool>("fuse_residual_connection",
377
                "(bool, default false) Only used in mkldnn kernel. Used "
378 379
                "whenever convolution output is as an input to residual "
                "connection.")
380 381
      .SetDefault(false)
      .AsExtra();
382 383 384
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
385 386
      .SetDefault(1.0f)
      .AsExtra();
387 388 389
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
390 391
      .SetDefault(1.0f)
      .AsExtra();
392 393 394
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
395 396
      .SetDefault(1.0f)
      .AsExtra();
397 398 399
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
400 401
      .SetDefault({1.0f})
      .AsExtra();
402 403 404
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
405 406
      .SetDefault(false)
      .AsExtra();
407 408 409 410 411 412
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
413
      .SetDefault("NCHW");
414 415 416 417 418 419 420 421
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
422 423
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
424 425
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
426
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
427
                "for cuDNN convolution or not, default is False.")
428 429
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
430

C
chengduoZH 已提交
431
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
432 433
Convolution Operator.

C
chengduoZH 已提交
434
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
435
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
436
parameters is checked in the infer-shape.
L
liym27 已提交
437
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
438
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
439
the width of the feature.
440
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
441 442 443 444
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
445 446 447 448
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
449 450
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
451
  Output:
C
chengduoZH 已提交
452 453 454
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
455 456
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
457
$$
C
chengduoZH 已提交
458
)DOC");
Q
qingqing01 已提交
459
  Apply();
C
chengduoZH 已提交
460 461
}

Y
Yu Yang 已提交
462
void Conv3DOpMaker::Make() {
463 464 465
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
466 467
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
468 469
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
470
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
471 472
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
473 474 475
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
476
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
477
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
478 479
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
480 481 482
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
483
           "input image channels divided by the groups.");
484 485 486 487
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
488 489
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
490 491
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
492
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
493 494 495 496
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
497
      .SetDefault({1, 1, 1});
L
liym27 已提交
498 499 500 501 502 503
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
504
      .SetDefault({0, 0, 0});
L
liym27 已提交
505 506 507 508 509 510
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
511 512
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
513
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
514 515 516 517
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
518
      .SetDefault(1);
C
chengduoZH 已提交
519
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
520 521
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
522
                            "convolution operator.")
C
chengduoZH 已提交
523
      .SetDefault({1, 1, 1});
524 525 526
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
527 528
      .SetDefault(false)
      .AsExtra();
529 530
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
531 532
      .SetDefault(false)
      .AsExtra();
533 534 535 536
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
537 538
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
539
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
540 541
      .SetDefault(false)
      .AsExtra();
542 543
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
544 545
      .SetDefault("")
      .AsExtra();
546 547
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
548 549
      .SetDefault(0.0f)
      .AsExtra();
550
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
551 552
      .SetDefault(0.0f)
      .AsExtra();
553 554 555 556
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
557 558
      .SetDefault(false)
      .AsExtra();
559 560 561 562
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
563 564
      .SetDefault(false)
      .AsExtra();
565 566
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
567 568 569
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
570
      "the input will be transformed automatically. ")
L
liym27 已提交
571
      .SetDefault("NCDHW");
572 573
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
574 575
      .SetDefault(false)
      .AsExtra();
576 577 578 579 580 581 582
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
583 584
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
585 586
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
587
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
588
                "for cuDNN convolution or not, default is False.")
589 590
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
591
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
592 593
Convolution3D Operator.

C
chengduoZH 已提交
594
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
595
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
596
parameters is checked in the infer-shape.
L
liym27 已提交
597
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
598
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
599 600 601 602 603 604
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
605 606 607 608
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
609 610
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
611
  Output:
C
chengduoZH 已提交
612 613 614
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
615 616 617
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
618
  $$
C
chengduoZH 已提交
619
)DOC");
Q
qingqing01 已提交
620
  Apply();
C
chengduoZH 已提交
621 622
}

C
chengduoZH 已提交
623 624 625 626 627 628 629 630 631 632 633
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

634 635
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
636 637
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
638
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
639
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
640
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
641
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
642
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
643

644
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
645 646
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
647 648
  }
#endif
649 650
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
651
      this->CanMKLDNNBeUsed(ctx, data_type)) {
652
    const std::string data_format = ctx.Attr<std::string>("data_format");
653
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
654
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
655
    customized_type_value = kConvMKLDNNFP32;
656
  }
657
#endif
658

659 660
  auto type = framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                      library_, customized_type_value);
661
  return type;
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
690 691
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
692
 public:
H
hong 已提交
693
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
694

695
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
696
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
697 698 699
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
700

H
hong 已提交
701 702
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
703 704 705 706 707

    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    }
H
hong 已提交
708
    op->SetAttrMap(this->Attrs());
709
  }
S
sneaxiy 已提交
710 711
};

H
hong 已提交
712 713
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
714
 public:
H
hong 已提交
715
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
716

717
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
718
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
719 720 721
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
722

H
hong 已提交
723 724
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
725

H
hong 已提交
726 727
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
728 729
    }

H
hong 已提交
730
    op->SetAttrMap(this->Attrs());
731 732 733
  }
};

Q
qingqing01 已提交
734 735 736 737
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
738 739
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
740
 public:
H
hong 已提交
741
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
742

743
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
744 745
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
746 747 748 749 750 751
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
752 753 754 755

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
756 757
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
758

L
lvmengsi 已提交
759
    op->SetOutput("DDOutput",
H
hong 已提交
760
                  ddx.empty()
761
                      ? this->EmptyInputGrad()
H
hong 已提交
762
                      : this->InputGrad(framework::GradVarName("Output")));
763 764 765 766
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
767

H
hong 已提交
768
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
769 770 771
  }
};

L
lvmengsi 已提交
772 773 774 775
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
776 777
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
778
 public:
H
hong 已提交
779
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
780

781
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
782 783
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
784 785 786 787 788 789
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
790

H
hong 已提交
791 792
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
793

L
lvmengsi 已提交
794
    op->SetOutput("DDOutput",
H
hong 已提交
795
                  ddx.empty()
796
                      ? this->EmptyInputGrad()
H
hong 已提交
797
                      : this->InputGrad(framework::GradVarName("Output")));
798 799 800 801
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
802

H
hong 已提交
803
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
804 805 806
  }
};

Q
qingqing01 已提交
807 808 809 810 811
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
812 813
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
814 815
    ctx->SetOutputDim("DDOutput", do_dims);
  }
816
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
817 818
    ctx->SetOutputDim("DFilter", w_dims);
  }
819
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
820 821 822 823 824 825 826 827 828
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
829
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
830 831
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

832
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
833 834
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
835
  }
Q
qingqing01 已提交
836
#endif
837 838 839
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
840 841 842
  return type;
}

C
chengduoZH 已提交
843 844 845 846
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
847 848
DECLARE_INFER_SHAPE_FUNCTOR(conv2d, Conv2dInferShapeFunctor,
                            PD_INFER_META(phi::ConvInferMeta));
Y
Yang Yang 已提交
849
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
850 851 852 853 854 855
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
856
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
857 858

// depthwise convolution op
H
hong 已提交
859 860
DECLARE_INFER_SHAPE_FUNCTOR(depthwise_conv2d, DepthwiseConv2dInferShapeFunctor,
                            PD_INFER_META(phi::ConvInferMeta));
Y
Yang Yang 已提交
861
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
862 863 864
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
865 866 867 868
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
869

H
hong 已提交
870 871
DECLARE_INFER_SHAPE_FUNCTOR(conv3d, Conv3dInferShapeFunctor,
                            PD_INFER_META(phi::ConvInferMeta));
Y
Yang Yang 已提交
872
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
873 874 875 876 877 878
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
879
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
REGISTER_OP_VERSION(conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(conv3d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));