conv_op.cc 20.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
47 48 49
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
50 51 52 53 54 55 56 57 58
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
59

Y
Yang Yu 已提交
60
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
61
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
62
                    "channels * groups.");
C
chengduoZH 已提交
63
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
64
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
65 66 67
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
68
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
69 70 71
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
72
  }
73
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
74
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
75 76
}

77 78
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
79 80
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
81
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
82
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
83
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
84 85
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
86
#ifdef PADDLE_WITH_CUDA
87
  if (platform::CanCUDNNBeUsed(ctx)) {
88
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
89 90
  }
#endif
91
#ifdef PADDLE_WITH_MKLDNN
92
  if (library == framework::LibraryType::kPlain &&
93
      platform::CanMKLDNNBeUsed(ctx)) {
94
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
95
    layout = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
96
    customized_type_value = kConvMKLDNNFP32;
97
  }
98
#endif
99

Y
Yu Yang 已提交
100
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
101 102 103 104 105 106
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
107
  if (input_data_type == framework::proto::VarType::FP16) {
108
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
109 110 111
                      "float16 can only be used when CUDNN is used");
  }

112
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
X
Xin Pan 已提交
113
                                 library, customized_type_value);
114 115
}

Y
Yu Yang 已提交
116
void Conv2DOpMaker::Make() {
117 118 119 120
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
121 122
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
123 124 125 126
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
127
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
128
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
129 130
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
131 132
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
133
           "input image channels divided by the groups.");
134 135 136 137 138
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
139 140 141
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
142
           "Used with fuse_residual_connection fusion.")
143
      .AsDispensable();
Y
Yihua Xu 已提交
144 145 146
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
147 148 149 150
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
151
      .SetDefault({1, 1});
C
chengduoZH 已提交
152 153 154 155
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
156 157 158
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
159
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
160 161 162 163
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
164
      .SetDefault(1);
C
chengduoZH 已提交
165
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
166 167
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
168
                            "convolution operator.")
C
chengduoZH 已提交
169
      .SetDefault({1, 1});
170 171 172 173
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
174 175 176
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
177 178
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
179
  AddAttr<bool>("fuse_residual_connection",
180
                "(bool, default false) Only used in mkldnn kernel. Used "
181 182
                "whenever convolution output is as an input to residual "
                "connection.")
183
      .SetDefault(false);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
220 221 222 223 224
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
225
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
226 227
Convolution Operator.

C
chengduoZH 已提交
228
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
229
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
230
parameters is checked in the infer-shape.
C
chengduoZH 已提交
231
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
232
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
233 234 235 236 237 238
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
239 240 241 242
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
243 244
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
245
  Output:
C
chengduoZH 已提交
246 247 248 249 250 251
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
252
)DOC");
Q
qingqing01 已提交
253
  Apply();
C
chengduoZH 已提交
254 255
}

Y
Yu Yang 已提交
256
void Conv3DOpMaker::Make() {
257 258 259 260
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
261 262
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
263
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
264
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
265 266 267
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
268
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
269
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
270 271
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
272 273 274
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
275
           "input image channels divided by the groups.");
276 277 278 279 280
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
281 282 283
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
284 285 286 287
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
288
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
289 290 291 292
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
293 294 295
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
296
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
297 298 299 300
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
301
      .SetDefault(1);
C
chengduoZH 已提交
302
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
303 304
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
305
                            "convolution operator.")
C
chengduoZH 已提交
306
      .SetDefault({1, 1, 1});
307 308 309 310
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
311 312 313
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
314 315 316 317 318 319 320
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
321 322 323 324 325 326 327
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
328 329 330
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
331 332 333 334 335 336 337 338
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
339 340 341 342 343
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
344
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
345 346
Convolution3D Operator.

C
chengduoZH 已提交
347
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
348
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
349
parameters is checked in the infer-shape.
C
chengduoZH 已提交
350
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
351
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
352 353 354 355 356 357
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
358 359 360 361
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
362 363
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
364
  Output:
C
chengduoZH 已提交
365 366 367 368 369 370 371
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
372
)DOC");
Q
qingqing01 已提交
373
  Apply();
C
chengduoZH 已提交
374 375
}

C
chengduoZH 已提交
376 377 378 379 380 381 382 383 384 385 386
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

387 388
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
389 390
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
391
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
392 393 394 395
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
396
#ifdef PADDLE_WITH_CUDA
397 398
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
399 400
  }
#endif
401 402 403 404
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
405
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
406
    customized_type_value = kConvMKLDNNFP32;
407
  }
408
#endif
409

Y
Yu Yang 已提交
410 411 412
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_,
                                 customized_type_value);
413 414
}

C
chengduoZH 已提交
415 416 417 418
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
419
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
C
chengduo 已提交
420
                  ops::ConvOpInferVarType,
421 422
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
423 424

// depthwise convolution op
Y
Yang Yang 已提交
425
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
426 427
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
428

Y
Yang Yang 已提交
429
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
430
                  ops::ConvOpInferVarType,
431 432
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
433

434 435
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
436
REGISTER_OP_CPU_KERNEL(
437
    depthwise_conv2d,
X
xzl 已提交
438 439 440 441
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
442
    depthwise_conv2d_grad,
X
xzl 已提交
443 444
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
445

C
chengduoZH 已提交
446
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
447 448 449 450 451 452
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
453 454

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
455 456 457 458 459 460
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);