conv_op.cc 20.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16 17 18 19

#include <string>
#include <vector>

20 21 22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
26 27 28 29

namespace paddle {
namespace operators {

C
chengduoZH 已提交
30
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
32
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
34
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
36
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
44
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
45

C
chengduoZH 已提交
46
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
47 48 49
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
50 51 52 53 54 55 56 57 58
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
59

Y
Yang Yu 已提交
60
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
61
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
62
                    "channels * groups.");
C
chengduoZH 已提交
63
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
64
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
65 66 67
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
68
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
69 70 71
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
72
  }
73
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
74
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
75 76
}

77 78
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
79 80
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
81
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
82
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
83
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
84 85
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
86
#ifdef PADDLE_WITH_CUDA
87
  if (platform::CanCUDNNBeUsed(ctx)) {
88
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
89 90
  }
#endif
91
#ifdef PADDLE_WITH_MKLDNN
92
  if (library == framework::LibraryType::kPlain &&
93
      platform::CanMKLDNNBeUsed(ctx)) {
94
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
95
    layout = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
96
    customized_type_value = kConvMKLDNNFP32;
97
  }
98
#endif
99

Y
Yu Yang 已提交
100
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
101 102 103 104 105 106
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
107
  if (input_data_type == framework::proto::VarType::FP16) {
108
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
109 110 111
                      "float16 can only be used when CUDNN is used");
  }

112
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
X
Xin Pan 已提交
113
                                 library, customized_type_value);
114 115
}

Y
Yu Yang 已提交
116
void Conv2DOpMaker::Make() {
117 118 119 120
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
121 122
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
123 124 125 126
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
127
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
128
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
129 130
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
131 132
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
133
           "input image channels divided by the groups.");
134 135 136 137 138
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
139 140 141
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
142
           "Used with fuse_residual_connection fusion.")
143
      .AsDispensable();
Y
Yihua Xu 已提交
144 145 146
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
147 148 149 150
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
151
      .SetDefault({1, 1});
C
chengduoZH 已提交
152 153 154 155
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
156 157 158
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
159
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
160 161 162 163
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
164
      .SetDefault(1);
C
chengduoZH 已提交
165
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
166 167
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
168
                            "convolution operator.")
C
chengduoZH 已提交
169
      .SetDefault({1, 1});
170 171 172 173
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
174 175 176
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
177 178 179
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
M
Michal Gallus 已提交
180 181
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
182
  AddAttr<bool>("fuse_residual_connection",
183
                "(bool, default false) Only used in mkldnn kernel. Used "
184 185
                "whenever convolution output is as an input to residual "
                "connection.")
186
      .SetDefault(false);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
223 224 225 226 227
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
228
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
229 230
Convolution Operator.

C
chengduoZH 已提交
231
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
232
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
233
parameters is checked in the infer-shape.
C
chengduoZH 已提交
234
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
235
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
236 237 238 239 240 241
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
242 243 244 245
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
246 247
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
248
  Output:
C
chengduoZH 已提交
249 250 251 252 253 254
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
255
)DOC");
Q
qingqing01 已提交
256
  Apply();
C
chengduoZH 已提交
257 258
}

Y
Yu Yang 已提交
259
void Conv3DOpMaker::Make() {
260 261 262 263
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
264 265
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
266
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
267
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
268 269 270
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
271
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
272
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
273 274
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
275 276 277
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
278
           "input image channels divided by the groups.");
279 280 281 282 283
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
284 285 286
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
287 288 289 290
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
291
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
292 293 294 295
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
296 297 298
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
299
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
300 301 302 303
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
304
      .SetDefault(1);
C
chengduoZH 已提交
305
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
306 307
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
308
                            "convolution operator.")
C
chengduoZH 已提交
309
      .SetDefault({1, 1, 1});
310 311 312 313
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
314 315 316
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
317 318 319 320 321 322 323
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
324 325 326 327 328 329 330
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
331 332 333
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
334 335 336 337 338 339 340 341
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
342 343 344 345 346
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
                "convolution, whether enable exhaustive search ",
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
347
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
348 349
Convolution3D Operator.

C
chengduoZH 已提交
350
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
351
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
352
parameters is checked in the infer-shape.
C
chengduoZH 已提交
353
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
354
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
355 356 357 358 359 360
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
361 362 363 364
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
365 366
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
367
  Output:
C
chengduoZH 已提交
368 369 370 371 372 373 374
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
375
)DOC");
Q
qingqing01 已提交
376
  Apply();
C
chengduoZH 已提交
377 378
}

C
chengduoZH 已提交
379 380 381 382 383 384 385 386 387 388 389
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

390 391
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
392 393
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
394
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
395 396 397 398
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
399
#ifdef PADDLE_WITH_CUDA
400 401
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
402 403
  }
#endif
404 405 406 407
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
408
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
409
    customized_type_value = kConvMKLDNNFP32;
410
  }
411
#endif
412

Y
Yu Yang 已提交
413 414 415
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_,
                                 customized_type_value);
416 417
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
class Conv2dGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(GradOpType());
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }

  virtual std::string GradOpType() const {
    return this->ForwardOpType() + "_grad";
  }
};

C
chengduoZH 已提交
444 445 446 447
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
448
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
449
                  ops::ConvOpInferVarType, ops::Conv2dGradMaker);
450
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
451 452

// depthwise convolution op
Y
Yang Yang 已提交
453
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
454
                  ops::ConvOpInferVarType, ops::Conv2dGradMaker);
455
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
456

Y
Yang Yang 已提交
457
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
C
chengduo 已提交
458
                  ops::ConvOpInferVarType,
459 460
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
461

462 463
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
464
REGISTER_OP_CPU_KERNEL(
465
    depthwise_conv2d,
X
xzl 已提交
466 467 468 469
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
470
    depthwise_conv2d_grad,
X
xzl 已提交
471 472
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
473

C
chengduoZH 已提交
474
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
475 476 477 478 479 480
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
481 482

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
483 484 485 486 487 488
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);