conv_op.cc 34.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
34 35 36
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
  OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "Conv");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
43 44
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
45
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
47
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
48 49 50 51 52

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
53

54 55
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
56 57 58 59
      platform::errors::InvalidArgument(
          "The input of Op(conv) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor, the shape of input is [%s].",
          in_dims.size(), in_dims));
60

C
chengduoZH 已提交
61 62
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
63 64 65 66 67 68
      platform::errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op(conv) should be equal. But received: the shape of input is [%s], "
          "the dimension size of input is [%d], the shape of filter is [%s],  "
          "the dimension size of filter is [%d].",
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
69 70

  int in_sub_stride_size = in_dims.size() - strides.size();
71 72 73 74 75 76 77 78 79 80
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
          "The dimension size of input minus the size of "
          "Attr(stride) must be euqal to 2 for Op(conv)."
          "But received: the dimension size of input minus the size "
          "of Attr(stride) is [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size, in_dims.size(), in_dims, strides.size()));
L
liym27 已提交
81 82 83

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
84

85 86
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
87 88 89 90 91 92 93 94
      platform::errors::InvalidArgument(
          "The number of input channels should be equal to filter channels * "
          "groups for Op(conv). But received: the input's channels is [%d], "
          "the shape of input is [%s], the filter's channel is [%d], the shape "
          "of filter is [%s], the groups is [%d], the data_format is %s. The "
          "error may come from wrong data_format setting.",
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
95
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
96
      filter_dims[0] % groups, 0,
97 98 99 100 101 102
      platform::errors::InvalidArgument(
          "The number of output channels of Op(conv) should be divided "
          "by groups. But received: the output channels is [%d], the shape "
          "of filter is [%s] (the first dimension of filter is output "
          "channel), the groups is [%d].",
          filter_dims[0], filter_dims, groups));
C
chengduoZH 已提交
103

L
liym27 已提交
104
  framework::DDim in_data_dims;
105
  framework::DDim filter_data_dims;
L
liym27 已提交
106 107 108 109 110
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
111 112 113

  filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size());

L
liym27 已提交
114 115 116 117 118 119 120 121
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
122
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
123
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
124
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
125 126
      output_shape.push_back(-1);
    } else {
127 128 129
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
130
    }
C
chengduoZH 已提交
131
  }
L
liym27 已提交
132 133 134 135
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

136
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
137
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
138 139
}

140 141
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
142 143
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
144
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
145
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
146
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
147 148
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
149 150
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
151
#ifdef PADDLE_WITH_CUDA
152
  if (platform::CanCUDNNBeUsed(ctx)) {
153
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
154 155
  }
#endif
156
#ifdef PADDLE_WITH_MKLDNN
157
  if (library == framework::LibraryType::kPlain &&
158
      platform::CanMKLDNNBeUsed(ctx)) {
159
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
160
    layout = framework::DataLayout::kMKLDNN;
161
    customized_type_value =
162 163
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
164 165
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
166
  }
167
#endif
168

169 170 171 172
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
173 174
                      platform::errors::InvalidArgument(
                          "input and filter data type should be consistent"));
175
  }
K
Kexin Zhao 已提交
176
  if (input_data_type == framework::proto::VarType::FP16) {
177
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
178 179
                      platform::errors::InvalidArgument(
                          "float16 can only be used when CUDNN is used"));
K
Kexin Zhao 已提交
180 181
  }

182 183 184
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
185 186
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
203 204
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
205 206 207 208 209 210 211
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
212
void Conv2DOpMaker::Make() {
213 214 215 216
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
217 218 219 220 221 222
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
223
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
224
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
225 226
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
227 228
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
229
           "input image channels divided by the groups.");
230 231 232 233 234
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
235 236 237
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
238
           "Used with fuse_residual_connection fusion.")
239
      .AsDispensable();
Y
Yihua Xu 已提交
240 241
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
242
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
243 244 245 246
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
247
      .SetDefault({1, 1});
C
chengduoZH 已提交
248 249
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
250 251
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
252
                            "convolution operator.")
C
chengduoZH 已提交
253
      .SetDefault({0, 0});
L
liym27 已提交
254 255 256 257 258 259
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
260 261
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
262
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
263 264 265 266
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
267
      .SetDefault(1);
C
chengduoZH 已提交
268
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
269 270
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
271
                            "convolution operator.")
C
chengduoZH 已提交
272
      .SetDefault({1, 1});
273 274 275 276
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
277 278 279
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
280 281 282
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
283 284 285 286 287 288
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
289 290
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
291 292 293 294 295 296
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
297 298 299 300 301 302 303 304
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
305
  AddAttr<bool>("fuse_residual_connection",
306
                "(bool, default false) Only used in mkldnn kernel. Used "
307 308
                "whenever convolution output is as an input to residual "
                "connection.")
309
      .SetDefault(false);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
330 331 332 333 334 335
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
336
      .SetDefault("NCHW");
337 338 339 340 341 342 343 344
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
345
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
346 347
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
348
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
349
                "for cuDNN convolution or not, default is False.")
350
      .SetDefault(false);
L
liym27 已提交
351

C
chengduoZH 已提交
352
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
353 354
Convolution Operator.

C
chengduoZH 已提交
355
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
356
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
357
parameters is checked in the infer-shape.
L
liym27 已提交
358
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
359
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
360
the width of the feature.
361
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
362 363 364 365
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
366 367 368 369
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
370 371
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
372
  Output:
C
chengduoZH 已提交
373 374 375
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
376 377
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
378
$$
C
chengduoZH 已提交
379
)DOC");
Q
qingqing01 已提交
380
  Apply();
C
chengduoZH 已提交
381 382
}

Y
Yu Yang 已提交
383
void Conv3DOpMaker::Make() {
384 385 386 387
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
388 389
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
390
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
391 392
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
393 394 395
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
396
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
397
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
398 399
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
400 401 402
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
403
           "input image channels divided by the groups.");
404 405 406 407 408
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
409 410
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
411
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
412 413 414 415
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
416
      .SetDefault({1, 1, 1});
L
liym27 已提交
417 418 419 420 421 422
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
423
      .SetDefault({0, 0, 0});
L
liym27 已提交
424 425 426 427 428 429
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
430 431
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
432
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
433 434 435 436
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
437
      .SetDefault(1);
C
chengduoZH 已提交
438
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
439 440
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
441
                            "convolution operator.")
C
chengduoZH 已提交
442
      .SetDefault({1, 1, 1});
443 444 445 446
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
447 448 449
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
450 451
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
452 453 454 455 456 457 458 459
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
460 461 462 463 464
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
465 466
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
467 468 469
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
470
      "the input will be transformed automatically. ")
L
liym27 已提交
471
      .SetDefault("NCDHW");
472 473 474
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
475 476 477 478 479 480 481
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
482
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
483 484
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
485
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
486
                "for cuDNN convolution or not, default is False.")
487
      .SetDefault(false);
C
chengduoZH 已提交
488
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
489 490
Convolution3D Operator.

C
chengduoZH 已提交
491
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
492
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
493
parameters is checked in the infer-shape.
L
liym27 已提交
494
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
495
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
496 497 498 499 500 501
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
502 503 504 505
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
506 507
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
508
  Output:
C
chengduoZH 已提交
509 510 511
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
512 513 514
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
515
  $$
C
chengduoZH 已提交
516
)DOC");
Q
qingqing01 已提交
517
  Apply();
C
chengduoZH 已提交
518 519
}

C
chengduoZH 已提交
520 521 522 523 524 525 526 527 528 529 530
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

531 532
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
533 534
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
535
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
536
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
537
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
538 539
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
540
#ifdef PADDLE_WITH_CUDA
541 542
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
543 544
  }
#endif
545 546 547
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
548
    const std::string data_format = ctx.Attr<std::string>("data_format");
549
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
550
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
551
    customized_type_value = kConvMKLDNNFP32;
552
  }
553
#endif
554

555 556 557
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
558
  return type;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
587 588
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
589
 public:
H
hong 已提交
590
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
591

592
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
593
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
594 595 596 597
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
598

H
hong 已提交
599 600 601 602
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
603
  }
S
sneaxiy 已提交
604 605
};

H
hong 已提交
606 607
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
608
 public:
H
hong 已提交
609
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
610

611
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
612
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
613 614 615
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
616

H
hong 已提交
617 618
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
619

H
hong 已提交
620 621
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
622 623
    }

H
hong 已提交
624
    op->SetAttrMap(this->Attrs());
625 626 627
  }
};

Q
qingqing01 已提交
628 629 630 631
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
632 633
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
634
 public:
H
hong 已提交
635
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
636

637
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
638 639
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
640 641 642 643 644 645
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
646 647 648 649

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
650 651
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
652

L
lvmengsi 已提交
653
    op->SetOutput("DDOutput",
H
hong 已提交
654
                  ddx.empty()
655
                      ? this->EmptyInputGrad()
H
hong 已提交
656
                      : this->InputGrad(framework::GradVarName("Output")));
657 658 659 660
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
661

H
hong 已提交
662
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
663 664 665
  }
};

L
lvmengsi 已提交
666 667 668 669
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
670 671
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
672
 public:
H
hong 已提交
673
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
674

675
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
676 677
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
678 679 680 681 682 683
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
684

H
hong 已提交
685 686
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
687

L
lvmengsi 已提交
688
    op->SetOutput("DDOutput",
H
hong 已提交
689
                  ddx.empty()
690
                      ? this->EmptyInputGrad()
H
hong 已提交
691
                      : this->InputGrad(framework::GradVarName("Output")));
692 693 694 695
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
696

H
hong 已提交
697
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
698 699 700
  }
};

Q
qingqing01 已提交
701 702 703 704 705
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
706 707
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
708 709
    ctx->SetOutputDim("DDOutput", do_dims);
  }
710
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
711 712
    ctx->SetOutputDim("DFilter", w_dims);
  }
713
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
714 715 716 717 718 719 720 721 722
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
723
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
724 725 726 727 728
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
729
  }
Q
qingqing01 已提交
730
#endif
731 732 733
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
734 735 736
  return type;
}

C
chengduoZH 已提交
737 738 739 740
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
741
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
742 743 744 745 746 747
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
748
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
749 750

// depthwise convolution op
Y
Yang Yang 已提交
751
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
752 753 754
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
755
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
756

Y
Yang Yang 已提交
757
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
758 759 760 761 762 763
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
764
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
765

766 767
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
768
REGISTER_OP_CPU_KERNEL(
769
    depthwise_conv2d,
X
xzl 已提交
770 771 772 773
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
774
    depthwise_conv2d_grad,
X
xzl 已提交
775 776
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
777

C
chengduoZH 已提交
778
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
779 780 781 782 783 784
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
785 786 787 788
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
789 790

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
791 792 793 794 795 796
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
797 798 799 800
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);