conv_op.cc 23.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
C
chengduoZH 已提交
28 29 30 31

namespace paddle {
namespace operators {

C
chengduoZH 已提交
32
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
33
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
34
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
35
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
36
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
37
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
38
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
39 40 41

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
42

C
chengduoZH 已提交
43 44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
47

C
chengduoZH 已提交
48
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
49 50 51
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
52 53 54 55 56 57 58 59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
61

Y
Yang Yu 已提交
62
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
63
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
64
                    "channels * groups.");
C
chengduoZH 已提交
65
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
66
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
67 68 69
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
70
  for (size_t i = 0; i < strides.size(); ++i) {
Y
Yang Yang 已提交
71 72 73
    output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                          dilations[i], paddings[i],
                                          strides[i]));
C
chengduoZH 已提交
74
  }
75
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
76
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
77 78
}

79 80
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
81 82
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
83
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
84
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
85
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
86
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
87 88
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
89
#ifdef PADDLE_WITH_CUDA
90
  if (platform::CanCUDNNBeUsed(ctx)) {
91
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
92 93
  }
#endif
94
#ifdef PADDLE_WITH_MKLDNN
95
  if (library == framework::LibraryType::kPlain &&
96
      platform::CanMKLDNNBeUsed(ctx)) {
97
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
98
    layout = framework::DataLayout::kMKLDNN;
99 100 101 102 103
    customized_type_value =
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType)
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
104
  }
105
#endif
106

107 108 109 110 111 112
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
113
  if (input_data_type == framework::proto::VarType::FP16) {
114
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
115 116 117
                      "float16 can only be used when CUDNN is used");
  }

118 119 120 121 122 123 124 125 126 127 128 129 130 131
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
132 133
}

Y
Yu Yang 已提交
134
void Conv2DOpMaker::Make() {
135 136 137 138
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
139 140
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
141 142 143 144
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
145
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
146
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
147 148
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
149 150
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
151
           "input image channels divided by the groups.");
152 153 154 155 156
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
157 158 159
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
160
           "Used with fuse_residual_connection fusion.")
161
      .AsDispensable();
Y
Yihua Xu 已提交
162 163 164
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
165 166 167 168
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
169
      .SetDefault({1, 1});
C
chengduoZH 已提交
170 171 172 173
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
174 175 176
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
177
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
178 179 180 181
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
182
      .SetDefault(1);
C
chengduoZH 已提交
183
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
184 185
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
186
                            "convolution operator.")
C
chengduoZH 已提交
187
      .SetDefault({1, 1});
188 189 190 191
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
192 193 194
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
195 196 197
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
198 199 200 201 202 203
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
204 205
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
206
  AddAttr<bool>("fuse_residual_connection",
207
                "(bool, default false) Only used in mkldnn kernel. Used "
208 209
                "whenever convolution output is as an input to residual "
                "connection.")
210
      .SetDefault(false);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
247 248
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
249
                "convolution, whether enable exhaustive search "
250 251
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
252
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
253 254
Convolution Operator.

C
chengduoZH 已提交
255
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
256
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
257
parameters is checked in the infer-shape.
C
chengduoZH 已提交
258
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
259
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
260 261 262 263 264 265
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
266 267 268 269
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
270 271
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
272
  Output:
C
chengduoZH 已提交
273 274 275 276 277 278
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
279
)DOC");
Q
qingqing01 已提交
280
  Apply();
C
chengduoZH 已提交
281 282
}

Y
Yu Yang 已提交
283
void Conv3DOpMaker::Make() {
284 285 286 287
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
288 289
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
290
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
291
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
292 293 294
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
295
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
296
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
297 298
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
299 300 301
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
302
           "input image channels divided by the groups.");
303 304 305 306 307
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
308 309 310
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
311 312 313 314
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
315
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
316 317 318 319
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
320 321 322
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
323
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
324 325 326 327
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
328
      .SetDefault(1);
C
chengduoZH 已提交
329
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
330 331
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
332
                            "convolution operator.")
C
chengduoZH 已提交
333
      .SetDefault({1, 1, 1});
334 335 336 337
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
338 339 340
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
341 342 343 344 345 346 347
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
348 349 350 351 352 353 354
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
355 356 357
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
358 359 360 361 362 363 364 365
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
      .SetDefault(4096);
366 367
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
368
                "convolution, whether enable exhaustive search "
369 370
                "for cuDNN convolution or not, defalut is False.")
      .SetDefault(false);
C
chengduoZH 已提交
371
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
372 373
Convolution3D Operator.

C
chengduoZH 已提交
374
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
375
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
376
parameters is checked in the infer-shape.
C
chengduoZH 已提交
377
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
378
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
379 380 381 382 383 384
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
385 386 387 388
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
389 390
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
391
  Output:
C
chengduoZH 已提交
392 393 394 395 396 397 398
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
399
)DOC");
Q
qingqing01 已提交
400
  Apply();
C
chengduoZH 已提交
401 402
}

C
chengduoZH 已提交
403 404 405 406 407 408 409 410 411 412 413
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

414 415
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
416 417
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
418
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
419 420 421 422
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
423
#ifdef PADDLE_WITH_CUDA
424 425
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
426 427
  }
#endif
428 429 430 431
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
432
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
433
    customized_type_value = kConvMKLDNNFP32;
434
  }
435
#endif
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
456 457
}

S
sneaxiy 已提交
458
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
459 460 461 462 463
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
464
    op->SetType(this->ForwardOpType() + "_grad");
465 466 467 468 469 470 471 472 473 474 475 476
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
477 478 479 480 481
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
482

S
sneaxiy 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
500 501 502
  }
};

C
chengduoZH 已提交
503 504 505 506
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
507
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
508
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
509
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad);
510 511

// depthwise convolution op
Y
Yang Yang 已提交
512
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
513
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
514
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
515

Y
Yang Yang 已提交
516
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
517
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
518
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
519

520 521
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
522
REGISTER_OP_CPU_KERNEL(
523
    depthwise_conv2d,
X
xzl 已提交
524 525 526 527
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
528
    depthwise_conv2d_grad,
X
xzl 已提交
529 530
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
531

C
chengduoZH 已提交
532
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
533 534 535 536 537 538
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
539 540

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
541 542 543 544 545 546
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);