conv_op.cc 27.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
34
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
35
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
36
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
37
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
38
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
39
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45 46
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
47
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
48

C
chengduoZH 已提交
49
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
50 51 52
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
53 54 55 56 57 58 59 60 61
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
62

Y
Yang Yu 已提交
63
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
64
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
65
                    "channels * groups.");
C
chengduoZH 已提交
66
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
67
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
68 69 70
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
71
  for (size_t i = 0; i < strides.size(); ++i) {
T
tink2123 已提交
72
    if ((!ctx->IsRuntime()) &&
T
tink2123 已提交
73
        (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
74 75 76 77 78 79
      output_shape.push_back(-1);
    } else {
      output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                            dilations[i], paddings[i],
                                            strides[i]));
    }
C
chengduoZH 已提交
80
  }
81
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
82
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
83 84
}

85 86
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
87 88
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
89
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
90
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
91
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
92
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
93 94
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
95
#ifdef PADDLE_WITH_CUDA
96
  if (platform::CanCUDNNBeUsed(ctx)) {
97
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
98 99
  }
#endif
100
#ifdef PADDLE_WITH_MKLDNN
101
  if (library == framework::LibraryType::kPlain &&
102
      platform::CanMKLDNNBeUsed(ctx)) {
103
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
104
    layout = framework::DataLayout::kMKLDNN;
105
    customized_type_value =
106 107
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
108 109
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
110
  }
111
#endif
112

113 114 115 116 117 118
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
119
  if (input_data_type == framework::proto::VarType::FP16) {
120
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
121 122 123
                      "float16 can only be used when CUDNN is used");
  }

124 125 126 127 128 129 130 131 132 133 134 135 136 137
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
138 139
}

Y
Yu Yang 已提交
140
void Conv2DOpMaker::Make() {
141 142 143 144
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
145 146
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
147 148 149 150
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
151
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
152
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
153 154
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
155 156
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
157
           "input image channels divided by the groups.");
158 159 160 161 162
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
163 164 165
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
166
           "Used with fuse_residual_connection fusion.")
167
      .AsDispensable();
Y
Yihua Xu 已提交
168 169 170
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
171 172 173 174
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
175
      .SetDefault({1, 1});
C
chengduoZH 已提交
176 177 178 179
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
180 181 182
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
183
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
184 185 186 187
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
188
      .SetDefault(1);
C
chengduoZH 已提交
189
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
190 191
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
192
                            "convolution operator.")
C
chengduoZH 已提交
193
      .SetDefault({1, 1});
194 195 196 197
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
198 199 200
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
201 202 203
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
204 205 206 207 208 209
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
210 211
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
212 213 214 215 216 217
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
218
  AddAttr<bool>("fuse_residual_connection",
219
                "(bool, default false) Only used in mkldnn kernel. Used "
220 221
                "whenever convolution output is as an input to residual "
                "connection.")
222
      .SetDefault(false);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
258
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
259 260
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
261
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
262
                "for cuDNN convolution or not, default is False.")
263
      .SetDefault(false);
C
chengduoZH 已提交
264
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
265 266
Convolution Operator.

C
chengduoZH 已提交
267
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
268
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
269
parameters is checked in the infer-shape.
C
chengduoZH 已提交
270
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
271
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
272 273 274 275 276 277
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
278 279 280 281
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
282 283
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
284
  Output:
C
chengduoZH 已提交
285 286 287 288 289 290
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
291
)DOC");
Q
qingqing01 已提交
292
  Apply();
C
chengduoZH 已提交
293 294
}

Y
Yu Yang 已提交
295
void Conv3DOpMaker::Make() {
296 297 298 299
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
300 301
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
302
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
303
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
304 305 306
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
307
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
308
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
309 310
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
311 312 313
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
314
           "input image channels divided by the groups.");
315 316 317 318 319
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
320 321 322
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
323 324 325 326
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
327
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
328 329 330 331
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
332 333 334
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
335
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
336 337 338 339
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
340
      .SetDefault(1);
C
chengduoZH 已提交
341
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
342 343
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
344
                            "convolution operator.")
C
chengduoZH 已提交
345
      .SetDefault({1, 1, 1});
346 347 348 349
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
350 351 352
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
353 354 355 356 357 358 359
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
360 361 362 363 364 365 366
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
367 368 369
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
370 371 372 373 374 375 376
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
377
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
378 379
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
380
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
381
                "for cuDNN convolution or not, default is False.")
382
      .SetDefault(false);
C
chengduoZH 已提交
383
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
384 385
Convolution3D Operator.

C
chengduoZH 已提交
386
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
387
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
388
parameters is checked in the infer-shape.
C
chengduoZH 已提交
389
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
390
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
391 392 393 394 395 396
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
397 398 399 400
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
401 402
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
403
  Output:
C
chengduoZH 已提交
404 405 406 407 408 409 410
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
411
)DOC");
Q
qingqing01 已提交
412
  Apply();
C
chengduoZH 已提交
413 414
}

C
chengduoZH 已提交
415 416 417 418 419 420 421 422 423 424 425
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

426 427
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
428 429
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
430
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
431 432 433 434
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
435
#ifdef PADDLE_WITH_CUDA
436 437
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
438 439
  }
#endif
440 441 442 443
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
444
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
445
    customized_type_value = kConvMKLDNNFP32;
446
  }
447
#endif
448

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
468 469
}

S
sneaxiy 已提交
470
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
471 472 473 474 475
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
476
    op->SetType(this->ForwardOpType() + "_grad");
477 478 479 480 481 482 483 484 485 486 487 488
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
489 490 491 492 493
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
494

S
sneaxiy 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
512 513 514
  }
};

Q
qingqing01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
536 537 538 539 540 541 542 543 544 545
    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

    op->SetOutput(
        "DDOutput",
        ddx.empty() ? empty_str : InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

Q
qingqing01 已提交
546 547 548 549 550 551 552 553 554 555 556
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

557
  if (ctx->HasOutput("DDOutput") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
558 559
    ctx->SetOutputDim("DDOutput", do_dims);
  }
560
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
561 562
    ctx->SetOutputDim("DFilter", w_dims);
  }
563
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    PADDLE_THROW("Now ConvDoubleGrad only supports cuDNN.");
  }
#endif
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
608 609 610 611
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
612
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
613
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
Q
qingqing01 已提交
614 615
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad, ops::Conv2DDoubleGradMaker);
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
616 617

// depthwise convolution op
Y
Yang Yang 已提交
618
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
619
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
620
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
621

Y
Yang Yang 已提交
622
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
623
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
624
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad);
C
chengduoZH 已提交
625

626 627
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
628
REGISTER_OP_CPU_KERNEL(
629
    depthwise_conv2d,
X
xzl 已提交
630 631 632 633
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
634
    depthwise_conv2d_grad,
X
xzl 已提交
635 636
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
637

C
chengduoZH 已提交
638
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
639 640 641 642 643 644
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
645 646

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
647 648 649 650 651 652
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);