device_context.h 26.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#include "paddle/fluid/platform/dynload/cusparse.h"
28
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
29
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
30
#endif
31
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
32
#endif
D
dzhwinter 已提交
33

34
#ifdef PADDLE_WITH_HIP
35
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
36 37 38 39 40
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
42 43
#endif

44 45 46 47
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
48
#ifdef PADDLE_WITH_MKLDNN
49
#include "dnnl.hpp"
50
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
51 52
#endif

53
#include <map>
W
wanghuancoder 已提交
54

55
#include "glog/logging.h"
Y
Yi Wang 已提交
56 57
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
58
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
59
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
60
#endif
61
#ifdef PADDLE_WITH_ASCEND_CL
62 63
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
64
#endif
Q
qijun 已提交
65
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
66

W
wanghuancoder 已提交
67 68 69 70 71
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

72
#ifdef PADDLE_WITH_XPU
73 74
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
75 76
#endif

77 78
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
79
#include "paddle/fluid/platform/device/npu/npu_info.h"
80 81
#endif

Q
QI JUN 已提交
82 83 84
namespace paddle {
namespace platform {

85
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
86 87 88 89
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
90
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
91 92 93 94
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
95 96
#endif  // PADDLE_WITH_CUDA

97 98 99 100
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
101
  NPU = 3,
102 103

  MAX_DEVICE_TYPES = 4,
104 105
};

106 107
DeviceType Place2DeviceType(const platform::Place& place);

108 109 110
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
111
constexpr DeviceType kNPU = DeviceType::NPU;
112

Q
QI JUN 已提交
113 114
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
115
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
116
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
117

118
  virtual void Wait() const {}
Q
QI JUN 已提交
119 120
};

Q
qijun 已提交
121 122
class CPUDeviceContext : public DeviceContext {
 public:
123
  CPUDeviceContext();
Q
qijun 已提交
124
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
125

126
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
127

L
liaogang 已提交
128
  Place GetPlace() const override;
Y
Yu Yang 已提交
129

Q
qijun 已提交
130
 private:
D
dzhwinter 已提交
131
  CPUPlace place_;
Q
qijun 已提交
132
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
133 134
};

Y
Yang Yu 已提交
135 136 137 138 139 140 141 142
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

143
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
144
namespace xpu = baidu::xpu::api;
145 146 147 148 149 150
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
151
  XPUVersion xpu_version() const { return xpu_version_; }
152 153 154 155 156 157
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

158
#ifdef PADDLE_WITH_XPU_BKCL
159
  /*! \brief  Return bkcl context. */
160 161 162 163 164 165
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

166 167
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
168
  XPUVersion xpu_version_;
169
  xpu::Context* context_;
170 171 172
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
173 174 175 176 177 178 179 180 181 182 183 184 185

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

186 187 188 189 190 191 192 193
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
194

195 196 197 198 199 200
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

201 202 203 204 205 206 207
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

223 224 225
 private:
  NPUPlace place_;
  aclrtContext context_;
226 227 228 229

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

266 267 268
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
269
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
270
class EigenCudaStreamDevice;
S
sneaxiy 已提交
271

272 273 274 275 276
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
277 278
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

294 295 296 297 298 299
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

300
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
301

302 303 304
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
305
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
306
#endif
307

308
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
309 310 311
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
312
#endif
G
Guo Sheng 已提交
313

314 315 316 317 318 319 320 321 322 323 324
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
325 326 327 328 329
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

349 350 351 352 353
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
354 355 356 357 358 359 360
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
361 362 363 364 365
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
366 367
    }
  }
368
#endif
369 370 371

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
372 373
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
374
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
375 376
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
377 378
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
379 380 381 382
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
383 384
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
385
            << ", but MIOPEN version in your machine is "
386
            << local_miopen_version / 100 << "." << local_miopen_version % 100
387 388 389 390
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
391 392
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
393 394
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
395 396 397 398 399 400 401 402 403 404 405 406 407
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
408 409
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
410
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
411
#endif
412 413 414 415 416
    } else {
      cudnn_handle_ = nullptr;
    }
  }

417
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
418
  void InitCuSolverContext() {
419 420
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
421 422
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
423
#endif
G
Guo Sheng 已提交
424

425 426
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
427
#ifdef PADDLE_WITH_HIP
428
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
429
#else
430
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
431
#endif
432 433 434 435 436 437 438
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
439
    cublas_tf32_tensor_core_handle_.reset();
440 441
  }

442
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
443 444
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
445
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
446 447 448
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
449
#endif
G
Guo Sheng 已提交
450

451 452 453 454
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
455 456 457
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
458
  cudnnHandle_t cudnn_handle_;
459
#endif
460 461
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
462
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
463
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
464
  cusolverDnHandle_t cusolver_dn_handle_;
465
#endif
466 467 468
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

469
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
470
 public:
D
dzhwinter 已提交
471
  explicit CUDADeviceContext(CUDAPlace place);
472
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
473

474
  /*! \brief  Wait for all operations completion in the stream. */
475
  void Wait() const override;
Q
QI JUN 已提交
476

477
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
478
  Place GetPlace() const override;
479

K
Kexin Zhao 已提交
480
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
481 482
  int GetComputeCapability() const;

483 484 485
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

486 487 488 489 490 491
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

492 493 494
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

495 496 497
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

498 499 500
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
501
    return context()->CublasCall(callback);
502 503 504 505 506 507 508 509 510
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
511
    return context()->TensorCoreCublasCallIfAvailable(callback);
512
  }
S
sneaxiy 已提交
513

514 515 516 517
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
518
  cudnnHandle_t cudnn_handle() const;
519
#endif
520

521 522 523 524
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
525
  cublasHandle_t cublas_handle() const;
526
#endif
527

S
sneaxiy 已提交
528 529 530 531 532 533 534 535 536
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

537
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
538
  cusolverDnHandle_t cusolver_dn_handle() const;
539
#endif
G
Guo Sheng 已提交
540

Q
init  
qijun 已提交
541
  /*! \brief  Return cuda stream in the device context. */
542
  gpuStream_t stream() const;
Q
QI JUN 已提交
543

544
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
545 546 547 548 549
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
550
#endif
Q
qingqing01 已提交
551

Y
Yu Yang 已提交
552
  template <typename Callback>
553
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
554
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
555 556
  }

S
sneaxiy 已提交
557 558
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
559 560 561 562 563
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
564 565
  }

566
  void ResetDefaultContext(const stream::Priority& priority) {
567 568 569
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

570
  void ResetThreadContext(const stream::Priority& priority) {
571 572 573 574 575 576 577 578 579 580
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
581

Q
QI JUN 已提交
582
 private:
D
dzhwinter 已提交
583
  CUDAPlace place_;
584
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
585

586 587 588 589 590 591
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
592

593 594
  mutable std::mutex cudnn_handle_mtx_;

595
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
596 597 598 599 600 601
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
602
#endif
Q
qingqing01 已提交
603

C
chengduo 已提交
604 605 606 607 608
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
609
  int max_threads_per_block_;
610
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
611

612
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
613
};
Q
qijun 已提交
614

615 616
class CudnnWorkspaceHandle {
 public:
617 618
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
619 620 621 622 623 624 625 626

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
627 628 629 630
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
631 632 633 634 635 636 637 638 639 640 641 642 643
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

644
  void ReallocWorkspace(size_t required_workspace_bytes);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
661
  std::mutex* mtx_;
662 663
};

Y
Yang Yu 已提交
664 665
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
666
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
667 668
};

C
chengduoZH 已提交
669
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
670 671 672 673 674 675
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
676

C
chengduoZH 已提交
677 678 679 680 681 682 683 684 685 686 687
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
688
#endif
Q
qijun 已提交
689

T
tensor-tang 已提交
690
#ifdef PADDLE_WITH_MKLDNN
691 692 693 694 695 696

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
697
    bool said_once = false;
698 699 700 701 702 703 704 705 706 707 708
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
709
    // MKL-DNN stream used for execution of primitives (per-thread)
710 711
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
712 713
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
714
    void* exec_ptr_ = nullptr;
715 716

    Body();
717
    ~Body();
718 719 720 721 722 723
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
724
    void log_lib_version(void);
725 726
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
727 728 729 730
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
731 732
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
748

T
tensor-tang 已提交
749 750
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
751 752 753 754 755 756 757 758 759 760
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
761
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
762 763 764
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
765
  using ShapeBlob = umap_key_string_t<KeyBlob>;
766 767
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

768 769 770 771
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
772
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
773 774 775
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
776

T
tensor-tang 已提交
777 778 779
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
780
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
781

782
  // Register object to currently used executor's map
783 784
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
785

786
  // Remove all entries from the blob map
787
  void ResetBlobMap(void* ptr);
788 789 790

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
791

792 793 794
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

795 796
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
797

798
  // Calculate number of oneDNN objects cached
799
  unsigned int GetCachedObjectsNumber(void) const;
800

801 802
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
803

804 805 806 807
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
808
 private:
809
  std::shared_ptr<BlobMap> p_blobmap_;
810 811
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
812
  std::shared_ptr<ExecShape> p_exec_items_;
813
  std::shared_ptr<std::mutex> p_mutex_;
814
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
815 816 817
};
#endif

D
dzhwinter 已提交
818 819 820 821 822
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
823
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
824 825 826
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
827 828 829 830
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
831
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
832 833 834 835 836 837
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

838 839
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
840
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
841
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
842

Y
Yang Yu 已提交
843 844 845 846 847 848 849
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

850 851
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
852 853
 private:
  static DeviceContextPool* pool;
854 855
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
856 857 858
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
859 860
}  // namespace platform
}  // namespace paddle