device_context.h 26.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
71 72
#include "paddle/fluid/platform/xpu/xpu_header.h"
#include "paddle/fluid/platform/xpu/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101
};

102 103
DeviceType Place2DeviceType(const platform::Place& place);

104 105 106
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
107
constexpr DeviceType kNPU = DeviceType::NPU;
108

Q
QI JUN 已提交
109 110
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
111
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
112
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
113

114
  virtual void Wait() const {}
Q
QI JUN 已提交
115 116
};

Q
qijun 已提交
117 118
class CPUDeviceContext : public DeviceContext {
 public:
119
  CPUDeviceContext();
Q
qijun 已提交
120
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
121

122
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
123

L
liaogang 已提交
124
  Place GetPlace() const override;
Y
Yu Yang 已提交
125

Q
qijun 已提交
126
 private:
D
dzhwinter 已提交
127
  CPUPlace place_;
Q
qijun 已提交
128
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
129 130
};

Y
Yang Yu 已提交
131 132 133 134 135 136 137 138
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

139
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
140
namespace xpu = baidu::xpu::api;
141 142 143 144 145 146
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
147
  XPUVersion xpu_version() const { return xpu_version_; }
148 149 150 151 152 153
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

154
#ifdef PADDLE_WITH_XPU_BKCL
155
  /*! \brief  Return bkcl context. */
156 157 158 159 160 161
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

162 163
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
164
  XPUVersion xpu_version_;
165
  xpu::Context* context_;
166 167 168
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
169 170 171 172 173 174 175 176 177 178 179 180 181

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

182 183 184 185 186 187 188 189
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
190

191 192 193 194 195 196
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

197 198 199 200 201 202 203
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

219 220 221
 private:
  NPUPlace place_;
  aclrtContext context_;
222 223 224 225

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

262 263 264
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
265
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
266
class EigenCudaStreamDevice;
S
sneaxiy 已提交
267

268 269 270 271 272
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
273
      const stream::Priority& priority = stream::Priority::kNormal);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

289
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
290

291 292 293
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
294
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
295
#endif
296

297
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
298 299 300
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
301
#endif
G
Guo Sheng 已提交
302

303 304 305 306 307 308 309 310 311 312 313
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
314 315 316 317 318
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

338 339 340 341 342
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
343 344 345 346 347 348 349
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
350 351 352 353 354
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
355 356
    }
  }
357
#endif
358 359 360

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
361 362 363 364 365
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
366 367
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
368 369 370 371
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
372 373
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
374
            << ", but MIOPEN version in your machine is "
375
            << local_miopen_version / 100 << "." << local_miopen_version % 100
376 377 378 379 380 381 382 383
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
384 385 386 387 388 389 390 391 392 393 394 395 396
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
397 398
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
399
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
400
#endif
401 402 403 404 405
    } else {
      cudnn_handle_ = nullptr;
    }
  }

406
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
407
  void InitCuSolverContext() {
408 409
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
410 411
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
412
#endif
G
Guo Sheng 已提交
413

414 415
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
416 417 418
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
419
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
420
#endif
421 422 423 424 425 426 427
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
428
    cublas_tf32_tensor_core_handle_.reset();
429 430
  }

431
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
432 433 434 435 436 437
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
438
#endif
G
Guo Sheng 已提交
439

440 441 442 443
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
444 445 446
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
447
  cudnnHandle_t cudnn_handle_;
448
#endif
449 450
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
451
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
452
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
453
  cusolverDnHandle_t cusolver_dn_handle_;
454
#endif
455 456 457
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

458
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
459
 public:
D
dzhwinter 已提交
460
  explicit CUDADeviceContext(CUDAPlace place);
461
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
462

463
  /*! \brief  Wait for all operations completion in the stream. */
464
  void Wait() const override;
Q
QI JUN 已提交
465

466
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
467
  Place GetPlace() const override;
468

K
Kexin Zhao 已提交
469
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
470 471
  int GetComputeCapability() const;

472 473 474
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

475 476 477 478 479 480
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

481 482 483
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

484 485 486
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

487 488 489
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
490
    return context()->CublasCall(callback);
491 492 493 494 495 496 497 498 499
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
500
    return context()->TensorCoreCublasCallIfAvailable(callback);
501
  }
S
sneaxiy 已提交
502

503 504 505 506
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
507
  cudnnHandle_t cudnn_handle() const;
508
#endif
509

510 511 512 513
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
514
  cublasHandle_t cublas_handle() const;
515
#endif
516

S
sneaxiy 已提交
517 518 519 520 521 522 523 524 525
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

526
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
527
  cusolverDnHandle_t cusolver_dn_handle() const;
528
#endif
G
Guo Sheng 已提交
529

Q
init  
qijun 已提交
530
  /*! \brief  Return cuda stream in the device context. */
531
  gpuStream_t stream() const;
Q
QI JUN 已提交
532

533
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
534 535 536 537 538
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
539
#endif
Q
qingqing01 已提交
540

Y
Yu Yang 已提交
541
  template <typename Callback>
542
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
543
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
544 545
  }

S
sneaxiy 已提交
546 547
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
548 549 550 551 552
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
553 554
  }

555
  void ResetDefaultContext(const stream::Priority& priority) {
556 557 558
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

559
  void ResetThreadContext(const stream::Priority& priority) {
560 561 562 563 564 565 566 567 568 569
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
570

Q
QI JUN 已提交
571
 private:
D
dzhwinter 已提交
572
  CUDAPlace place_;
573
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
574

575 576 577 578 579 580
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
581

582 583
  mutable std::mutex cudnn_handle_mtx_;

584
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
585 586 587 588 589 590
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
591
#endif
Q
qingqing01 已提交
592

C
chengduo 已提交
593 594 595 596 597
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
598
  int max_threads_per_block_;
599
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
600

601
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
602
};
Q
qijun 已提交
603

604 605
class CudnnWorkspaceHandle {
 public:
606 607
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
608 609 610 611 612 613 614 615

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
616 617 618 619
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
620 621 622 623 624 625 626 627 628 629 630 631 632
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

633
  void ReallocWorkspace(size_t required_workspace_bytes);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
650
  std::mutex* mtx_;
651 652
};

Y
Yang Yu 已提交
653 654
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
655
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
656 657
};

C
chengduoZH 已提交
658
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
659 660 661 662 663 664
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
665

C
chengduoZH 已提交
666 667 668 669 670 671 672 673 674 675 676
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
677
#endif
Q
qijun 已提交
678

T
tensor-tang 已提交
679
#ifdef PADDLE_WITH_MKLDNN
680 681 682 683 684 685

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
686
    bool said_once = false;
687 688 689 690 691 692 693 694 695 696 697
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
698 699 700
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
701 702
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
703
    void* exec_ptr_ = nullptr;
704 705

    Body();
706
    ~Body();
707 708 709 710 711 712
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
713
    void log_lib_version(void);
714 715
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
716 717 718 719
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
720 721
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
737

T
tensor-tang 已提交
738 739
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

757 758 759 760 761 762 763 764
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
765

T
tensor-tang 已提交
766 767 768
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
769
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
770

771 772
  // Register object to currently used executor's map
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
773
  void RemoveShapeEntriesWithExecutor(void) const;
774

775
  // Remove all entries from the blob map
776
  void ResetBlobMap(void* ptr);
777 778 779

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
780

781 782 783
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

784 785
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
786

787
  // Calculate number of oneDNN objects cached
788
  unsigned int GetCachedObjectsNumber(void) const;
789

790 791
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
792

793 794 795 796
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
797
 private:
798
  std::shared_ptr<BlobMap> p_blobmap_;
799 800
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
801
  std::shared_ptr<ExecShape> p_exec_items_;
802
  std::shared_ptr<std::mutex> p_mutex_;
803
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
804 805 806
};
#endif

D
dzhwinter 已提交
807 808 809 810 811
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
812
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
813 814 815
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
816 817 818 819
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
820
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
821 822 823 824 825 826
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

827 828
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
829
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
830
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
831

Y
Yang Yu 已提交
832 833 834 835 836 837 838
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

839 840
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
841 842
 private:
  static DeviceContextPool* pool;
843 844
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
845 846 847
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
848 849
}  // namespace platform
}  // namespace paddle