device_context.h 14.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/temporary_allocator.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
W
Wu Yi 已提交
26
#if !defined(__APPLE__) && !defined(_WIN32)
W
Wu Yi 已提交
27
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
28
#endif
Y
Yi Wang 已提交
29
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
30
#endif
D
dzhwinter 已提交
31

T
tensor-tang 已提交
32
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
33
#include "mkldnn.hpp"
T
tensor-tang 已提交
34 35
#endif

36 37
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
38 39
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
40 41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
43
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
44 45 46 47

namespace paddle {
namespace platform {

C
chengduo 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*! \brief device temporary allocator singleton.
 *
 * Some operator needs temporary memory during computation, for example,
 * conv_gemm, which needs use col to store the result of im2col. If we
 * create a stack memory which is used by CUDA Kernel, before the
 * Computation(...) returns, we should add ctx->Wait(), because the
 * execution of CUDA is async, if there doesn't have ctx->Wait(),
 * the temporary memory will be released before the CUDA Kernel uses
 * it.
 *
 * DeviceTemporaryAllocator is a singleton, which contains a
 * `TemporaryAllocator` for each <Place, Stream>. And the TemporaryAllocator
 * contains a temp_allocation_queue which is used to store the temporary
 * allocations. The allocation, which is allocated by TemporaryAllocator,
 * is a unique_ptr,  and when it is not held by any variable, it will be
 * pushed into the temp_allocation_queue. There are two opportunities to free
 * the allocations of temp_allocation_queue:
 *  - when the Stream calls cudaStreamSynchronize;
 *  - when the allocation size of opportunities exceeds a certain threshold
67
 *    (defined by FLAGS_limit_of_tmp_allocation).
C
chengduo 已提交
68 69
 *
 * */
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class DeviceTemporaryAllocator {
 public:
  static DeviceTemporaryAllocator& Instance() {
    PADDLE_ENFORCE_NOT_NULL(allocators,
                            "Need to Create DeviceTemporaryAllocator first!");
    return *allocators;
  }

  static DeviceTemporaryAllocator& Init() {
    if (allocators == nullptr) {
      allocators = new DeviceTemporaryAllocator();
    }
    return *allocators;
  }

/*! \brief  Return handle of single temporary allocator. */
#ifdef PADDLE_WITH_CUDA
  platform::TemporaryAllocator& Get(const platform::Place& place,
                                    const cudaStream_t& stream);
#endif
  template <typename DeviceContext>
  platform::TemporaryAllocator& Get(const DeviceContext& dev_ctx);

  platform::TemporaryAllocator& Get(const platform::Place& place);

 private:
  DeviceTemporaryAllocator() : cpu_allocator_(platform::CPUPlace()) {}

  static DeviceTemporaryAllocator* allocators;

  platform::TemporaryAllocator cpu_allocator_;

#ifdef PADDLE_WITH_CUDA
  std::map<std::pair<platform::Place, cudaStream_t>,
           std::unique_ptr<platform::TemporaryAllocator>>
      device_allocator_;
#endif

  std::mutex mtx_;

  DISABLE_COPY_AND_ASSIGN(DeviceTemporaryAllocator);
};

Q
QI JUN 已提交
113 114 115
class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
116
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
117

118
  virtual void Wait() const {}
Q
QI JUN 已提交
119 120
};

Q
qijun 已提交
121 122
class CPUDeviceContext : public DeviceContext {
 public:
123
  CPUDeviceContext();
Q
qijun 已提交
124
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
125

126
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
127

L
liaogang 已提交
128
  Place GetPlace() const override;
Y
Yu Yang 已提交
129

Q
qijun 已提交
130
 private:
D
dzhwinter 已提交
131
  CPUPlace place_;
Q
qijun 已提交
132
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
133 134
};

Y
Yang Yu 已提交
135 136 137 138 139 140 141 142
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

143
#ifdef PADDLE_WITH_CUDA
144

Q
qijun 已提交
145
class EigenCudaStreamDevice;
S
sneaxiy 已提交
146 147 148 149 150 151 152 153 154 155 156 157
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place);
  ~CudnnHolder();
  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

 private:
  friend class CudnnWorkspaceHandle;
  void ReallocateWorkspace(size_t required_workspace_len);

  template <typename Callback>
  void RunFuncImpl(Callback&& cudnn_func, size_t required_workspace_len) {
Y
Yu Yang 已提交
158
    if (required_workspace_len > WorkspaceSize()) {
S
sneaxiy 已提交
159 160
      ReallocateWorkspace(required_workspace_len);
    }
Z
Zeng Jinle 已提交
161 162
    VLOG(2) << "Cudnn workspace size: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
Y
Yu Yang 已提交
163 164 165
    cudnn_func(WorkspacePtr());
  }

166 167 168 169
  /*! \brief Reset workspace thus release the memory */
  inline void ResetWorkspace() {
    if (workspace_) {
      // Maybe someone is using the current workspace
170
      PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(*stream_));
171 172 173 174
      workspace_ = nullptr;
    }
  }

Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188
  inline void* WorkspacePtr() {
    if (workspace_) {
      return workspace_->ptr();
    } else {
      return nullptr;
    }
  }

  inline size_t WorkspaceSize() {
    if (workspace_) {
      return workspace_->size();
    } else {
      return 0;
    }
S
sneaxiy 已提交
189 190 191 192 193
  }

  std::mutex& Mutex() { return mtx_; }

  cudnnHandle_t cudnn_handle_;
Y
Yu Yang 已提交
194
  memory::AllocationPtr workspace_;
S
sneaxiy 已提交
195 196 197 198 199 200

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};
D
dongzhihong 已提交
201

S
sneaxiy 已提交
202 203 204 205
class CudnnWorkspaceHandle {
 public:
  /*! \brief The lock would not be acquired when constructor calls.
   *  The lock would be acquired when RunFunc() is called first time. */
S
sneaxiy 已提交
206
  inline explicit CudnnWorkspaceHandle(CudnnHolder* holder) : holder_(holder) {}
S
sneaxiy 已提交
207 208 209

  /*! \brief Thread which call RunFunc() would acquire the lock first
   *  before invoking cudnn functions. */
S
sneaxiy 已提交
210 211 212 213 214 215 216 217
  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_len) {
    if (!guard_) {
      guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
    }
    holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
                         required_workspace_len);
  }
S
sneaxiy 已提交
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  /*! \brief Thread which call RunFuncSync() would acquire the lock first
   *  before invoking cudnn function and release gpu memory after running
   *  the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_len) {
    if (!guard_) {
      guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
    }
    holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
                         required_workspace_len);
    holder_->ResetWorkspace();
  }

S
sneaxiy 已提交
235 236
  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;
S
sneaxiy 已提交
237 238 239 240 241 242

 private:
  CudnnHolder* holder_;  // not own
  std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};

243
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
244
 public:
D
dzhwinter 已提交
245
  explicit CUDADeviceContext(CUDAPlace place);
246
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
247

248
  /*! \brief  Wait for all operations completion in the stream. */
249
  void Wait() const override;
Q
QI JUN 已提交
250

251
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
252
  Place GetPlace() const override;
253

K
Kexin Zhao 已提交
254
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
255 256
  int GetComputeCapability() const;

257 258 259
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

260 261 262
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
282

283
  /*! \brief  Return cudnn  handle in the device context. */
284
  cudnnHandle_t cudnn_handle() const;
285

S
sneaxiy 已提交
286 287 288 289 290 291 292 293 294
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
295
  /*! \brief  Return cuda stream in the device context. */
296
  cudaStream_t stream() const;
Q
QI JUN 已提交
297

Q
qingqing01 已提交
298
#if !defined(_WIN32)
Q
qingqing01 已提交
299 300 301 302 303
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
304
#endif
Q
qingqing01 已提交
305

Y
Yu Yang 已提交
306 307 308
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
309
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(ev, stream_));
Y
Yu Yang 已提交
310 311
  }

S
sneaxiy 已提交
312 313 314 315 316
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
317
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
318

Q
QI JUN 已提交
319
 private:
D
dzhwinter 已提交
320
  CUDAPlace place_;
Q
QI JUN 已提交
321

N
nhzlx 已提交
322
  mutable std::once_flag init_cudnn_;
323

Q
qijun 已提交
324
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
325
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
326
  mutable std::unique_ptr<CudnnHolder> cudnn_holder_;
327
  cudaStream_t stream_;
328 329 330

  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
331

Q
qingqing01 已提交
332
#if !defined(_WIN32)
Q
qingqing01 已提交
333 334 335 336 337 338
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
339
#endif
Q
qingqing01 已提交
340

C
chengduo 已提交
341 342 343 344 345
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
346

S
fix bug  
sneaxiy 已提交
347
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
348
  std::unique_ptr<StreamCallbackManager> callback_manager_;
349
  CudnnHolder* cudnn_holder() const;
350

351
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
352
};
Q
qijun 已提交
353

Y
Yang Yu 已提交
354 355
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
356
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
357 358
};

C
chengduoZH 已提交
359
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
360 361 362 363 364 365
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
366

C
chengduoZH 已提交
367 368 369 370 371 372 373 374 375 376 377
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
378
#endif
Q
qijun 已提交
379

T
tensor-tang 已提交
380
#ifdef PADDLE_WITH_MKLDNN
381 382 383 384 385 386
// Following three maps are used to cache MKLDNN primitives.
// There relations are:
// - BlobMap = Map<cur_thread_id, ShapeBlob>
// - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
// - KeyBlob  = Map<blob_name, blob>
// Where:
S
Sylwester Fraczek 已提交
387
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
388 389
using ShapeBlob = std::unordered_map<std::string, std::shared_ptr<KeyBlob>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<ShapeBlob>>;
S
Sylwester Fraczek 已提交
390

391 392 393 394 395 396 397
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;

void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
398
void set_cur_input_shape_str(std::string input_shape_str);
399
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
S
Sylwester Fraczek 已提交
400

T
tensor-tang 已提交
401 402 403 404 405
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
406
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
407

408 409 410
  // Remove all entries from the blob map
  void ResetBlobMap() const;

411 412 413
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

414 415
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
416

417 418
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
419 420

 private:
421
  mkldnn::engine engine_;
422 423
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
424 425 426
};
#endif

D
dzhwinter 已提交
427 428 429 430 431
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
432
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
433 434 435 436 437
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
438
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
439 440 441 442 443 444 445
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
446
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
447

Y
Yang Yu 已提交
448 449 450 451 452 453 454
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

455 456
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
457 458
 private:
  static DeviceContextPool* pool;
459 460
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
461 462 463
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
464 465
}  // namespace platform
}  // namespace paddle