device_context.h 18.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

T
tensor-tang 已提交
33
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
34
#include "mkldnn.hpp"
35
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
36 37
#endif

38
#include <map>
W
wanghuancoder 已提交
39

40
#include "glog/logging.h"
Y
Yi Wang 已提交
41 42
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
43
#ifdef PADDLE_WITH_CUDA
44
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
45
#endif
Q
qijun 已提交
46
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
47

W
wanghuancoder 已提交
48 49 50 51 52
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

53 54 55 56
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
#endif

Q
QI JUN 已提交
57 58 59 60 61
namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
62
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
63
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
64

65
  virtual void Wait() const {}
Q
QI JUN 已提交
66 67
};

Q
qijun 已提交
68 69
class CPUDeviceContext : public DeviceContext {
 public:
70
  CPUDeviceContext();
Q
qijun 已提交
71
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
72

73
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
74

L
liaogang 已提交
75
  Place GetPlace() const override;
Y
Yu Yang 已提交
76

Q
qijun 已提交
77
 private:
D
dzhwinter 已提交
78
  CPUPlace place_;
Q
qijun 已提交
79
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
80 81
};

Y
Yang Yu 已提交
82 83 84 85 86 87 88 89
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  XPUPlace place_;
  xpu::Context* context_;

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

119
#ifdef PADDLE_WITH_CUDA
120

121
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
122
class EigenCudaStreamDevice;
S
sneaxiy 已提交
123

124 125 126 127 128
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
129
      const stream::Priority& priority = stream::Priority::kNormal);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

  const cudaStream_t& RawStream() { return stream_->raw_stream(); }

  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }

G
Guo Sheng 已提交
149 150 151 152
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
#endif
    }
  }

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
210 211
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
212
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
213 214 215 216 217
    } else {
      cudnn_handle_ = nullptr;
    }
  }

G
Guo Sheng 已提交
218
  void InitCuSolverContext() {
219 220
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
221 222 223
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }

224 225
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
226
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
227 228 229 230 231 232 233 234 235
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
  }

G
Guo Sheng 已提交
236 237 238 239 240 241 242
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }

243 244 245 246 247 248 249
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
  cudnnHandle_t cudnn_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
G
Guo Sheng 已提交
250
  cusolverDnHandle_t cusolver_dn_handle_;
251 252 253
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

254
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
255
 public:
D
dzhwinter 已提交
256
  explicit CUDADeviceContext(CUDAPlace place);
257
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
258

259
  /*! \brief  Wait for all operations completion in the stream. */
260
  void Wait() const override;
Q
QI JUN 已提交
261

262
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
263
  Place GetPlace() const override;
264

K
Kexin Zhao 已提交
265
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
266 267
  int GetComputeCapability() const;

268 269 270
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

271 272 273 274 275 276
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

277 278 279
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

280 281 282
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

283 284 285
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
286
    return context()->CublasCall(callback);
287 288 289 290 291 292 293 294 295
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
296
    return context()->TensorCoreCublasCallIfAvailable(callback);
297
  }
S
sneaxiy 已提交
298

299
  /*! \brief  Return cudnn  handle in the device context. */
300
  cudnnHandle_t cudnn_handle() const;
301

S
sneaxiy 已提交
302 303 304 305 306 307 308 309 310
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

G
Guo Sheng 已提交
311 312
  cusolverDnHandle_t cusolver_dn_handle() const;

Q
init  
qijun 已提交
313
  /*! \brief  Return cuda stream in the device context. */
314
  cudaStream_t stream() const;
Q
QI JUN 已提交
315

316
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
317 318 319 320 321
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
322
#endif
Q
qingqing01 已提交
323

Y
Yu Yang 已提交
324
  template <typename Callback>
325 326
  void RecordEvent(cudaEvent_t ev, Callback callback) const {
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
327 328
  }

S
sneaxiy 已提交
329 330
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
331 332 333 334 335
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
336 337
  }

338
  void ResetDefaultContext(const stream::Priority& priority) {
339 340 341
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

342
  void ResetThreadContext(const stream::Priority& priority) {
343 344 345 346 347 348 349 350 351 352
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
353

Q
QI JUN 已提交
354
 private:
D
dzhwinter 已提交
355
  CUDAPlace place_;
356
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
357

358 359 360 361 362 363
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
364

365 366
  mutable std::mutex cudnn_handle_mtx_;

367
#if defined(PADDLE_WITH_NCCL)
Q
qingqing01 已提交
368 369 370 371 372 373
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
374
#endif
Q
qingqing01 已提交
375

C
chengduo 已提交
376 377 378 379 380
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
381
  int max_threads_per_block_;
382
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
383

384
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
385
};
Q
qijun 已提交
386

387 388
class CudnnWorkspaceHandle {
 public:
389 390
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
391 392 393 394 395 396 397 398

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
399 400 401 402
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
403 404 405 406 407 408 409 410 411 412 413 414 415
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

416
  void ReallocWorkspace(size_t required_workspace_bytes);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
433
  std::mutex* mtx_;
434 435
};

Y
Yang Yu 已提交
436 437
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
438
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
439 440
};

C
chengduoZH 已提交
441
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
442 443 444 445 446 447
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
448

C
chengduoZH 已提交
449 450 451 452 453 454 455 456 457 458 459
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
460
#endif
Q
qijun 已提交
461

T
tensor-tang 已提交
462
#ifdef PADDLE_WITH_MKLDNN
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;

    Body();
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
503

T
tensor-tang 已提交
504 505
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
523 524 525
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
526
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
527

528
  // Remove all entries from the blob map
529 530
  void ResetBlobMap();

531 532 533 534
  // Set a suffix to be added to key
  void SetKeySuffix(const std::string& suffix) { key_suffix_ = suffix; }
  const std::string& GetKeySuffix(void) const { return key_suffix_; }

535 536 537 538
  // Disable adding  thread ID to the key
  void DisableThreadInfoInKey(void) { key_attach_thread_id_ = false; };
  bool IsThreadIdUsedInKey(void) const { return key_attach_thread_id_; };

539 540
  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
541

542 543 544
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

545 546
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
547

548 549
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
550

551 552 553 554
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
555
 private:
556
  mkldnn::engine engine_;
557 558
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
559
  bool block_next_cache_clearing_ = false;
560
  std::string key_suffix_;  // Key identifying current Executor
561
  bool key_attach_thread_id_ = true;
T
tensor-tang 已提交
562 563 564
};
#endif

D
dzhwinter 已提交
565 566 567 568 569
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
570
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
571 572 573
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
574 575 576 577
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
578
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
579 580 581 582 583 584
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

585 586
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
587
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
588
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
589

Y
Yang Yu 已提交
590 591 592 593 594 595 596
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

597 598
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
599 600
 private:
  static DeviceContextPool* pool;
601 602
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
603 604 605
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
606 607
}  // namespace platform
}  // namespace paddle