device_context.h 26.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#include "paddle/fluid/platform/dynload/cusparse.h"
28
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
29
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
32
#endif
D
dzhwinter 已提交
33

34 35 36 37 38 39 40 41 42 43
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

44 45 46 47
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
48
#ifdef PADDLE_WITH_MKLDNN
49
#include "dnnl.hpp"
50
#include "paddle/fluid/framework/data_layout.h"
51
namespace mkldnn = dnnl;
T
tensor-tang 已提交
52 53
#endif

54
#include <map>
W
wanghuancoder 已提交
55

56
#include "glog/logging.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
59
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
60
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
61
#endif
62 63 64
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
65
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
66

67 68 69 70
// This aias is required for now so that namespace name changes can be made to
// less than 20 files at a time. After all the names are changed it will be
// removed.

W
wanghuancoder 已提交
71 72 73 74 75
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

76
#ifdef PADDLE_WITH_XPU
77 78
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
79 80
#endif

81 82 83 84 85
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
86 87 88
namespace paddle {
namespace platform {

89
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
90 91 92 93
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
94
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
95 96 97 98
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
99 100
#endif  // PADDLE_WITH_CUDA

101 102 103 104
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
105
  NPU = 3,
106 107

  MAX_DEVICE_TYPES = 4,
108 109
};

110 111
DeviceType Place2DeviceType(const platform::Place& place);

112 113 114
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
115
constexpr DeviceType kNPU = DeviceType::NPU;
116

Q
QI JUN 已提交
117 118
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
119
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
120
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
121

122
  virtual void Wait() const {}
Q
QI JUN 已提交
123 124
};

Q
qijun 已提交
125 126
class CPUDeviceContext : public DeviceContext {
 public:
127
  CPUDeviceContext();
Q
qijun 已提交
128
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
129

130
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
131

L
liaogang 已提交
132
  Place GetPlace() const override;
Y
Yu Yang 已提交
133

Q
qijun 已提交
134
 private:
D
dzhwinter 已提交
135
  CPUPlace place_;
Q
qijun 已提交
136
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
137 138
};

Y
Yang Yu 已提交
139 140 141 142 143 144 145 146
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

147
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
148
namespace xpu = baidu::xpu::api;
149 150 151 152 153 154
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
155
  XPUVersion xpu_version() const { return xpu_version_; }
156 157 158 159 160 161
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

162
#ifdef PADDLE_WITH_XPU_BKCL
163
  /*! \brief  Return bkcl context. */
164 165 166 167 168 169
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

170 171
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
172
  XPUVersion xpu_version_;
173
  xpu::Context* context_;
174 175 176
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
177 178 179 180 181 182 183 184 185 186 187 188 189

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

190 191 192 193 194 195 196 197
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
198

199 200 201 202 203 204
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

205 206 207 208 209 210 211
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

227 228 229
 private:
  NPUPlace place_;
  aclrtContext context_;
230 231 232 233

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

270 271 272
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
273
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
274
class EigenCudaStreamDevice;
S
sneaxiy 已提交
275

276 277 278 279 280
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
281 282
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

298 299 300 301 302 303
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

304
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
305

306 307 308
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
309
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
310
#endif
311

312
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
313 314 315
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
316
#endif
G
Guo Sheng 已提交
317

318 319 320 321 322 323 324 325 326 327 328
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
329 330 331 332 333
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

353 354 355 356 357
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
358 359 360 361 362 363 364
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
365 366 367 368 369
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
370 371
    }
  }
372
#endif
373 374 375

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
376 377 378 379 380
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
381 382
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
383 384 385 386
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
387 388
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
389
            << ", but MIOPEN version in your machine is "
390
            << local_miopen_version / 100 << "." << local_miopen_version % 100
391 392 393 394 395 396 397 398
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
399 400 401 402 403 404 405 406 407 408 409 410 411
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
412 413
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
414
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
415
#endif
416 417 418 419 420
    } else {
      cudnn_handle_ = nullptr;
    }
  }

421
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
422
  void InitCuSolverContext() {
423 424
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
425 426
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
427
#endif
G
Guo Sheng 已提交
428

429 430
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
431 432 433
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
434
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
435
#endif
436 437 438 439 440 441 442
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
443
    cublas_tf32_tensor_core_handle_.reset();
444 445
  }

446
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
447 448 449 450 451 452
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
453
#endif
G
Guo Sheng 已提交
454

455 456 457 458
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
459 460 461
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
462
  cudnnHandle_t cudnn_handle_;
463
#endif
464 465
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
466
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
467
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
468
  cusolverDnHandle_t cusolver_dn_handle_;
469
#endif
470 471 472
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

473
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
474
 public:
D
dzhwinter 已提交
475
  explicit CUDADeviceContext(CUDAPlace place);
476
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
477

478
  /*! \brief  Wait for all operations completion in the stream. */
479
  void Wait() const override;
Q
QI JUN 已提交
480

481
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
482
  Place GetPlace() const override;
483

K
Kexin Zhao 已提交
484
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
485 486
  int GetComputeCapability() const;

487 488 489
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

490 491 492 493 494 495
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

496 497 498
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

499 500 501
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

502 503 504
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
505
    return context()->CublasCall(callback);
506 507 508 509 510 511 512 513 514
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
515
    return context()->TensorCoreCublasCallIfAvailable(callback);
516
  }
S
sneaxiy 已提交
517

518 519 520 521
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
522
  cudnnHandle_t cudnn_handle() const;
523
#endif
524

525 526 527 528
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
529
  cublasHandle_t cublas_handle() const;
530
#endif
531

S
sneaxiy 已提交
532 533 534 535 536 537 538 539 540
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

541
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
542
  cusolverDnHandle_t cusolver_dn_handle() const;
543
#endif
G
Guo Sheng 已提交
544

Q
init  
qijun 已提交
545
  /*! \brief  Return cuda stream in the device context. */
546
  gpuStream_t stream() const;
Q
QI JUN 已提交
547

548
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
549 550 551 552 553
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
554
#endif
Q
qingqing01 已提交
555

Y
Yu Yang 已提交
556
  template <typename Callback>
557
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
558
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
559 560
  }

S
sneaxiy 已提交
561 562
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
563 564 565 566 567
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
568 569
  }

570
  void ResetDefaultContext(const stream::Priority& priority) {
571 572 573
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

574
  void ResetThreadContext(const stream::Priority& priority) {
575 576 577 578 579 580 581 582 583 584
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
585

Q
QI JUN 已提交
586
 private:
D
dzhwinter 已提交
587
  CUDAPlace place_;
588
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
589

590 591 592 593 594 595
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
596

597 598
  mutable std::mutex cudnn_handle_mtx_;

599
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
600 601 602 603 604 605
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
606
#endif
Q
qingqing01 已提交
607

C
chengduo 已提交
608 609 610 611 612
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
613
  int max_threads_per_block_;
614
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
615

616
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
617
};
Q
qijun 已提交
618

619 620
class CudnnWorkspaceHandle {
 public:
621 622
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
623 624 625 626 627 628 629 630

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
631 632 633 634
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
635 636 637 638 639 640 641 642 643 644 645 646 647
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

648
  void ReallocWorkspace(size_t required_workspace_bytes);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
665
  std::mutex* mtx_;
666 667
};

Y
Yang Yu 已提交
668 669
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
670
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
671 672
};

C
chengduoZH 已提交
673
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
674 675 676 677 678 679
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
680

C
chengduoZH 已提交
681 682 683 684 685 686 687 688 689 690 691
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
692
#endif
Q
qijun 已提交
693

T
tensor-tang 已提交
694
#ifdef PADDLE_WITH_MKLDNN
695 696 697 698 699 700

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
701
    bool said_once = false;
702 703 704 705 706 707 708 709 710 711 712
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
713
    // MKL-DNN stream used for execution of primitives (per-thread)
714 715
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
716 717
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
718
    void* exec_ptr_ = nullptr;
719 720

    Body();
721
    ~Body();
722 723 724 725 726 727
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
728
    void log_lib_version(void);
729 730
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
731 732 733 734
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
735 736
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
752

T
tensor-tang 已提交
753 754
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
755 756 757 758 759 760 761 762 763 764
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
765
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
766 767 768
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
769
  using ShapeBlob = umap_key_string_t<KeyBlob>;
770 771
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

772 773 774 775
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
776
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
777 778 779
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
780

T
tensor-tang 已提交
781 782 783
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
784
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
785

786
  // Register object to currently used executor's map
787 788
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
789

790
  // Remove all entries from the blob map
791
  void ResetBlobMap(void* ptr);
792 793 794

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
795

796 797 798
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

799 800
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
801

802
  // Calculate number of oneDNN objects cached
803
  unsigned int GetCachedObjectsNumber(void) const;
804

805 806
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
807

808 809 810 811
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
812
 private:
813
  std::shared_ptr<BlobMap> p_blobmap_;
814 815
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
816
  std::shared_ptr<ExecShape> p_exec_items_;
817
  std::shared_ptr<std::mutex> p_mutex_;
818
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
819 820 821
};
#endif

D
dzhwinter 已提交
822 823 824 825 826
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
827
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
828 829 830
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
831 832 833 834
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
835
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
836 837 838 839 840 841
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

842 843
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
844
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
845
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
846

Y
Yang Yu 已提交
847 848 849 850 851 852 853
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

854 855
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
856 857
 private:
  static DeviceContextPool* pool;
858 859
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
860 861 862
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
863 864
}  // namespace platform
}  // namespace paddle