device_context.h 11.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
W
Wu Yi 已提交
25
#if !defined(__APPLE__) && !defined(_WIN32)
W
Wu Yi 已提交
26
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
27
#endif
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
29
#endif
D
dzhwinter 已提交
30

T
tensor-tang 已提交
31
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
32
#include "mkldnn.hpp"
33
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
34 35
#endif

36 37
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
38 39
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
40 41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
43
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
44 45 46 47 48 49

namespace paddle {
namespace platform {

class DeviceContext {
 public:
Z
Zeng Jinle 已提交
50
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
51
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
52

53
  virtual void Wait() const {}
Q
QI JUN 已提交
54 55
};

Q
qijun 已提交
56 57
class CPUDeviceContext : public DeviceContext {
 public:
58
  CPUDeviceContext();
Q
qijun 已提交
59
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
60

61
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
62

L
liaogang 已提交
63
  Place GetPlace() const override;
Y
Yu Yang 已提交
64

Q
qijun 已提交
65
 private:
D
dzhwinter 已提交
66
  CPUPlace place_;
Q
qijun 已提交
67
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
68 69
};

Y
Yang Yu 已提交
70 71 72 73 74 75 76 77
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

78
#ifdef PADDLE_WITH_CUDA
79

Q
qijun 已提交
80
class EigenCudaStreamDevice;
81
class CudnnWorkspaceHandle;
S
sneaxiy 已提交
82

83
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
84
 public:
D
dzhwinter 已提交
85
  explicit CUDADeviceContext(CUDAPlace place);
86
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
87

88
  /*! \brief  Wait for all operations completion in the stream. */
89
  void Wait() const override;
Q
QI JUN 已提交
90

91
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
92
  Place GetPlace() const override;
93

K
Kexin Zhao 已提交
94
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
95 96
  int GetComputeCapability() const;

97 98 99
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

100 101 102
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

103 104 105
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
125

126
  /*! \brief  Return cudnn  handle in the device context. */
127
  cudnnHandle_t cudnn_handle() const;
128

S
sneaxiy 已提交
129 130 131 132 133 134 135 136 137
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
138
  /*! \brief  Return cuda stream in the device context. */
139
  cudaStream_t stream() const;
Q
QI JUN 已提交
140

Q
qingqing01 已提交
141
#if !defined(_WIN32)
Q
qingqing01 已提交
142 143 144 145 146
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
147
#endif
Q
qingqing01 已提交
148

Y
Yu Yang 已提交
149 150 151
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
152
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(ev, stream_));
Y
Yu Yang 已提交
153 154
  }

S
sneaxiy 已提交
155 156 157 158 159
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
160
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
161

Q
QI JUN 已提交
162
 private:
D
dzhwinter 已提交
163
  CUDAPlace place_;
Q
QI JUN 已提交
164

N
nhzlx 已提交
165
  mutable std::once_flag init_cudnn_;
166

Q
qijun 已提交
167
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
168
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
169
  cudaStream_t stream_;
170

171
  cudnnHandle_t cudnn_handle_;
172 173
  mutable std::mutex cudnn_handle_mtx_;

174 175
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
176

Q
qingqing01 已提交
177
#if !defined(_WIN32)
Q
qingqing01 已提交
178 179 180 181 182 183
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
184
#endif
Q
qingqing01 已提交
185

C
chengduo 已提交
186 187 188 189 190
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
191
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
192

S
fix bug  
sneaxiy 已提交
193
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
194
  std::unique_ptr<StreamCallbackManager> callback_manager_;
195

196
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
197
};
Q
qijun 已提交
198

199 200
class CudnnWorkspaceHandle {
 public:
201 202
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
203 204 205 206 207 208 209 210

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
211 212 213 214
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
215 216 217 218 219 220 221 222 223 224 225 226 227
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

228
  void ReallocWorkspace(size_t required_workspace_bytes);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
245
  std::mutex* mtx_;
246 247
};

Y
Yang Yu 已提交
248 249
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
250
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
251 252
};

C
chengduoZH 已提交
253
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
254 255 256 257 258 259
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
260

C
chengduoZH 已提交
261 262 263 264 265 266 267 268 269 270 271
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
272
#endif
Q
qijun 已提交
273

T
tensor-tang 已提交
274
#ifdef PADDLE_WITH_MKLDNN
275 276 277 278 279 280
// Following three maps are used to cache MKLDNN primitives.
// There relations are:
// - BlobMap = Map<cur_thread_id, ShapeBlob>
// - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
// - KeyBlob  = Map<blob_name, blob>
// Where:
S
Sylwester Fraczek 已提交
281
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
282 283
using ShapeBlob = std::unordered_map<std::string, std::shared_ptr<KeyBlob>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<ShapeBlob>>;
S
Sylwester Fraczek 已提交
284

285 286 287 288 289 290 291
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;

void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
292
void set_cur_input_shape_str(std::string input_shape_str);
293
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
294 295
void set_cur_paddle_data_layout(framework::DataLayout);
framework::DataLayout get_cur_paddle_data_layout(void);
S
Sylwester Fraczek 已提交
296

T
tensor-tang 已提交
297 298 299 300 301
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
302
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
303

304 305 306
  // Remove all entries from the blob map
  void ResetBlobMap() const;

307 308 309
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

310 311
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
312

313 314
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
315 316

 private:
317
  mkldnn::engine engine_;
318 319
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
320 321 322
};
#endif

D
dzhwinter 已提交
323 324 325 326 327
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
328
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
329 330 331 332 333
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
334
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
335 336 337 338 339 340
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

341 342
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
343
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
344
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
345

Y
Yang Yu 已提交
346 347 348 349 350 351 352
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

353 354
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
355 356
 private:
  static DeviceContextPool* pool;
357 358
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
359 360 361
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
362 363
}  // namespace platform
}  // namespace paddle