math.py 80.9 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
36 37
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
38 39 40 41 42 43 44
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
45 46 47 48
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
49 50
from ..fluid.layers import reduce_all    #DEFINE_ALIAS
from ..fluid.layers import reduce_any    #DEFINE_ALIAS
51 52 53 54
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
55 56 57 58 59 60 61
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
62 63
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
64

65
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
66
from ..fluid import layers
67

68

69
__all__ = [
70 71 72 73 74 75
        'abs',
        'acos',
        'asin',
        'atan',
        'ceil',
        'cos',
76
        'cosh',
77 78 79
        'cumsum',
        'exp',
        'floor',
80
        'increment',
81
        'log',
J
joejiong 已提交
82
        'log2',
J
joejiong 已提交
83
        'log10',
84
        'logsumexp',
85
        'mul',
86
        'multiplex',
87
        'pow',
88
        'prod',
89 90 91 92 93 94
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
95
        'sinh',
96 97 98 99 100
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
101
        'add_n',
102
        'max',
103
        'maximum',
104
        'min',
105
        'minimum',
106
        'mm',
107 108 109 110 111
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
112
        'multiply',
113
        'add',
114
        'subtract',
115 116
        'atan',
        'logsumexp',
117
        'inverse',
118 119 120 121
        'log1p',
        'erf',
        'addcmul',
        'addmm',
Y
Yang Zhang 已提交
122
        'clip',
L
Li Fuchen 已提交
123
        'trace',
J
Jack Zhou 已提交
124 125 126
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
127 128
        'isnan',
        'broadcast_shape'
129 130 131
]
# yapf: enable.

132 133 134 135 136 137 138 139 140 141 142 143 144
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

145
def pow(x, y, name=None):
146
    """
147
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
148

149 150
    .. math::
        out = x^{y} 
151

152 153
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
154 155


156 157 158 159 160
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        y (Tensor): An N-D Tensor with type float32, float64, int32 or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
161
    Returns:
162
        N-D Tensor. A location into which the result is stored. Its dimension equals with $x$.
163 164 165

    Examples:

166
        ..  code-block:: python
167 168 169

            import paddle

170
            # example 1: y is a float
171
            x = paddle.to_tensor([1, 2, 3])
172 173
            y = 2
            res = paddle.pow(x, y)
J
joejiong 已提交
174
            print(res) # [1 4 9]
175 176
            
            # example 2: y is a Tensor
177
            y = paddle.full(shape=[1], fill_value=2, dtype='float32')
178
            res = paddle.pow(x, y)
J
joejiong 已提交
179
            print(res) # [1 4 9]
180 181

    """
182
    # in dynamic graph mode
W
WuHaobo 已提交
183
    if in_dygraph_mode():
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
204
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
205 206 207
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
208 209 210



211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

231 232
    out = helper.kwargs.get('out', None)

233 234 235 236 237 238 239 240 241 242 243 244
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
245 246 247 248 249 250

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
251 252 253 254 255 256 257 258 259 260 261

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
262
def add(x, y, name=None):
263
    """
264
    Examples:
265 266 267 268

    ..  code-block:: python

        import paddle
269 270
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
271
        z = paddle.add(x, y)
272
        print(z)  # [3., 8., 6. ]
273 274 275 276 277 278

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
279
            x, y, axis=axis, op_name=op_type)
280 281 282 283

    return _elementwise_op(LayerHelper(op_type, **locals()))


284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
def subtract(x, y, name=None):
    """
    Substract two tensors element-wise. The equation is: 

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
        
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


345
def divide(x, y, name=None):
346
    """
347
    Divide two tensors element-wise. The equation is:
348

349 350
    .. math::
        out = x / y
351

352 353
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
354

355 356 357 358
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
359

360
    Returns:
361
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
362

363
    Examples:
364

365
        ..  code-block:: python
366

367
            import paddle
368

369 370
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
371
            z = paddle.divide(x, y)
372
            print(z)  # [2., 0.6, 2.]
373

374 375 376 377 378 379 380
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
381

382
    return _elementwise_op(LayerHelper(op_type, **locals()))
383 384


385 386 387
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
388

389 390
    .. math::
        out = x // y
391

392 393
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
394

395 396 397 398
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
399

400 401
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
402

403
    Examples:
404

405
        ..  code-block:: python
406

407
            import paddle
408

409 410
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
411
            z = paddle.floor_divide(x, y)
412
            print(z)  # [2, 0, 2, 2]
413

414 415 416 417 418 419
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
420

421
    return _elementwise_op(LayerHelper(op_type, **locals()))
422 423


424
def remainder(x, y, name=None):
425
    r"""
426 427 428
    Mod two tensors element-wise. The equation is:

    .. math::
429

430 431 432
        out = x \% y

    **Note**:
433
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
434 435

    Args:
W
WangXi 已提交
436 437
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
438 439 440
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
441
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
442 443 444 445 446 447 448

    Examples:

        ..  code-block:: python

            import paddle

449 450
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
451
            z = paddle.remainder(x, y)
W
WangXi 已提交
452
            print(z)  # [0, 3, 2, 1]
453 454 455

    """
    op_type = 'elementwise_mod'
456 457 458
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
459
            x, y, axis=axis, op_name=op_type)
460 461 462 463

    return _elementwise_op(LayerHelper(op_type, **locals()))


464 465 466 467
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


468
def multiply(x, y, name=None):
469
    """
470
    multiply two tensors element-wise. The equation is:
471

472 473
    .. math::
        out = x * y
474

475 476
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
477

478 479 480 481
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
482

483
    Returns:
484
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
485

486 487 488 489 490 491
    Examples:

        ..  code-block:: python

            import paddle

492 493
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
494
            res = paddle.multiply(x, y)
495
            print(res) # [[5, 12], [21, 32]]
496

497
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
498 499 500
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
501 502 503 504

    """
    op_type = 'elementwise_mul'
    act = None
505
    axis = -1
506

507 508 509 510 511
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

512
    if in_dygraph_mode():
513
        if not isinstance(x, (paddle.Tensor)):
514 515 516 517
            raise TypeError(
                    'Input x must tensor type, but received type of x: %s'
                    % (x.dtype))

518 519 520 521
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

522
def maximum(x, y, name=None):
523
    """
524
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is: 
525

526 527
    .. math::
        out = max(x, y)
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
572 573
    """
    op_type = 'elementwise_max'
574
    axis = -1
575 576 577 578 579 580
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

581
def minimum(x, y, name=None):
582
    """
583
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is: 
584

585 586
    .. math::
        out = min(x, y)
587

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
631 632
    """
    op_type = 'elementwise_min'
633
    axis = -1
634 635 636 637 638
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
639

640 641
for func in [
        add,
642
        multiply
643
]:
644
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
645 646
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
647 648 649 650 651 652 653
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
654 655
        op_proto,
        additional_args_lines=additional_args_lines,
656
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
657
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
658
        }) + """\n""" + str(func.__doc__)
659

Y
Yang Zhang 已提交
660

661
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
662 663 664 665
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
666 667 668
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
669
            Tensor with a single element, otherwise must be in the
670 671 672 673 674 675 676
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
677
            value is False.
678
        name (str, optional): The default value is None. Normally there is no need for
679 680 681
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
682 683
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
684 685

    Raises:
686 687
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
688
        TypeError: The type of :attr:`axis` must be int, list or tuple.
689

690 691 692 693
    Examples:
        .. code-block:: python

            import paddle
694

695
            # x is a Tensor with following elements:
696 697 698
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
699 700
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
701
            out1 = paddle.sum(x)  # [3.5]
702 703 704
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
705

706
            # y is a Tensor with shape [2, 2, 2] and elements as below:
707 708 709
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
710 711
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
712 713
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
714
    """
715 716 717 718 719 720 721 722 723 724 725
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

726
    attrs = {
727 728 729
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
730 731 732 733
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
734 735
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
736
                attrs.update({
737
                    'in_dtype': x.dtype,
738 739 740 741 742
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
743
        axis = axis if axis != None and axis != [] else [0]
744
        if dtype_flag:
745 746 747
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
748 749
                                       convert_np_dtype_to_dtype_(dtype))
        else:
750 751
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
752
    check_variable_and_dtype(
753
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
754 755 756 757 758 759 760 761 762 763 764

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

765 766
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

767 768 769 770 771
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
772
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
773 774
    helper.append_op(
        type='reduce_sum',
775
        inputs={'X': x},
776 777 778
        outputs={'Out': out},
        attrs=attrs)
    return out
779

780

781
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
782
def add_n(inputs, name=None):
783
    """
S
Steffy-zxf 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
819 820

    Args:
S
Steffy-zxf 已提交
821 822
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
823 824 825 826
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
827
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
828 829 830 831 832 833

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
834 835 836 837 838
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
839
    """
S
Steffy-zxf 已提交
840 841 842 843
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
844

S
Steffy-zxf 已提交
845 846
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
847 848 849 850
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
851
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
852 853
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
854
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
855 856


857 858 859 860 861 862 863 864 865 866 867
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
868
def mm(input, mat2, name=None):
869
    """
S
swtkiwi 已提交
870

871 872 873 874 875 876 877 878 879 880
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

881 882
    This op does not support broadcasting. See paddle.matmul.

883
    Args:
884
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
885
        mat2 (Tensor): The input tensor which is a Tensor.
886 887 888 889
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
890
        Tensor: The product Tensor.
891 892 893 894 895

    Examples:
        .. code-block:: python

            import paddle
896 897 898 899 900 901 902 903
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
904

905 906
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
907
        out = _varbase_creator(dtype=input.dtype)
908 909
        core.ops.matmul(input, mat2, out)
        return out
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
947
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
948 949 950 951
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
952

953

Y
yaoxuefeng 已提交
954
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
955
    """
956 957
	:alias_main: paddle.addmm
	:alias: paddle.addmm,paddle.tensor.addmm,paddle.tensor.math.addmm
S
swtkiwi 已提交
958

959 960 961 962 963 964 965 966 967 968 969 970
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
971 972 973
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
974
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
975
        alpha (float): Coefficient of $x*y$.
976 977 978
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
979
        Tensor: The output Tensor of addmm op.
980 981 982

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
983
            
984 985
            import paddle

Y
yaoxuefeng 已提交
986 987 988
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
989

Y
yaoxuefeng 已提交
990
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
991

N
Noel 已提交
992
            print(out)
993 994 995
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1016 1017 1018 1019
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1020 1021 1022 1023
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1024
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1025 1026 1027 1028 1029 1030 1031
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1032 1033


1034
def logsumexp(x, axis=None, keepdim=False, name=None):
1035
    r"""
1036
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1037

1038
    .. math::
1039
       logsumexp(x) = \\log\\sum exp(x)
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1059

1060
    Returns:
1061 1062
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1063

1064
    Examples:
1065

1066
    .. code-block:: python
1067

1068 1069
        import paddle

1070
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1071 1072
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1073 1074

    """
1075 1076 1077 1078 1079 1080 1081
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1082

1083
    if in_dygraph_mode():
1084
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1085

1086 1087 1088
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1089

1090
    helper = LayerHelper('logsumexp', **locals())
1091
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1092 1093 1094 1095
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1096

S
swtkiwi 已提交
1097

1098 1099
def inverse(x, name=None):
    """
1100 1101 1102 1103 1104
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1105
        x (Tensor): The input tensor. The last two
1106 1107 1108 1109 1110 1111 1112 1113
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1114
        Tensor: A Tensor holds the inverse of x. The shape and data type
1115
                        is the same as x.
1116 1117 1118 1119 1120

    Examples:
        .. code-block:: python

            import paddle
1121 1122

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1123 1124
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1125 1126 1127

    """
    if in_dygraph_mode():
1128
        return core.ops.inverse(x)
1129

1130 1131
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1132
                                 ['float32', 'float64'], 'inverse')
1133
        if len(x.shape) < 2:
1134 1135 1136
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1137 1138
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1139
    helper = LayerHelper('inverse', **locals())
1140
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1141
    helper.append_op(
1142
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1143 1144 1145
    return out


1146
def max(x, axis=None, keepdim=False, name=None):
1147
    """
S
swtkiwi 已提交
1148

1149
    Computes the maximum of tensor elements over the given axis.
1150 1151

    Args:
1152
        x(Tensor): A tensor, the data type is float32,
1153
            float64, int32, int64.
1154
        axis(list|int, optional): The axis along which the maximum is computed.
1155
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1156
            `x` and return a Tensor with a single element,
1157 1158 1159
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1160
            output Tensor. The result tensor will have one fewer dimension
1161
            than the `x` unless :attr:`keepdim` is true, default
1162
            value is False.
1163
        name(str, optional): The default value is None.  Normally there is no need for
1164 1165 1166
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1167
        Tensor, results of maximum on the specified axis of input tensor,
1168
        it's data type is the same as `x`.
1169 1170 1171

    Examples:
        .. code-block:: python
1172

1173
            import paddle
1174

N
Noel 已提交
1175
            # data_x is a Tensor with shape [2, 4]
1176
            # the axis is a int element
1177 1178 1179

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1180
            result1 = paddle.max(x)
N
Noel 已提交
1181
            print(result1)
1182 1183
            #[0.9]
            result2 = paddle.max(x, axis=0)
N
Noel 已提交
1184
            print(result2) 
1185 1186
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1187
            print(result3)
1188 1189
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1190
            print(result4)
1191 1192 1193
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1194
            # data_y is a Tensor with shape [2, 2, 2]
1195
            # the axis is list 
1196 1197 1198

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1199
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1200
            print(result5)
1201 1202
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1203
            print(result6)
1204
            #[7. 8.]
1205 1206
    """

1207
    if axis is not None and not isinstance(axis, list):
1208 1209 1210 1211 1212 1213 1214 1215
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1216 1217 1218 1219 1220
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1221

1222
    helper = LayerHelper('max', **locals())
1223
    check_variable_and_dtype(
1224
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1225

1226
    out = helper.create_variable_for_type_inference(
1227
            dtype=x.dtype)
1228 1229
    helper.append_op(
        type='reduce_max',
1230
        inputs={'X': x},
1231 1232
        outputs={'Out': out},
        attrs={
1233 1234
            'dim': axis,
            'keep_dim': keepdim,
1235 1236 1237 1238
            'reduce_all': reduce_all
        })
    return out

1239
def min(x, axis=None, keepdim=False, name=None):
1240
    """
S
swtkiwi 已提交
1241

1242
    Computes the minimum of tensor elements over the given axis
1243

1244
    Args:
1245 1246
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1247
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1248
            `x` and return a Tensor with a single element,
1249 1250 1251
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1252
            output Tensor. The result tensor will have one fewer dimension
1253
            than the `x` unless :attr:`keepdim` is true, default
1254
            value is False.
W
WuHaobo 已提交
1255
        name(str, optional): The default value is None.  Normally there is no need for 
1256
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1257

1258
    Returns:
1259
        Tensor, results of minimum on the specified axis of input tensor,
1260
        it's data type is the same as input's Tensor.
1261

1262 1263 1264
    Examples:
        .. code-block:: python

1265
            import paddle
1266

1267
            # x is a tensor with shape [2, 4]
1268
            # the axis is a int element
1269 1270
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1271
            result1 = paddle.min(x)
N
Noel 已提交
1272
            print(result1)
1273 1274
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1275
            print(result2)
1276 1277
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
N
Noel 已提交
1278
            print(result3) 
1279 1280
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1281
            print(result4)
1282 1283 1284
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1285
            # y is a Tensor with shape [2, 2, 2]
1286
            # the axis is list 
1287 1288
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1289
            result5 = paddle.min(y, axis=[1, 2])
N
Noel 已提交
1290
            print(result5) 
1291 1292
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1293
            print(result6)
1294 1295
            #[1. 2.]
    """
1296

1297
    if axis is not None and not isinstance(axis, list):
1298 1299 1300 1301 1302 1303 1304
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1305 1306
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1307
    if in_dygraph_mode():
1308
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1309
                                   'reduce_all', reduce_all)
1310 1311 1312 1313 1314 1315

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1316
            dtype=x.dtype)
1317 1318
    helper.append_op(
        type='reduce_min',
1319
        inputs={'X': x},
1320 1321
        outputs={'Out': out},
        attrs={
1322 1323
            'dim': axis,
            'keep_dim': keepdim,
1324 1325 1326 1327 1328
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1329
def log1p(x, name=None):
1330
    r"""
1331
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1332

1333 1334
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1335

1336
    Args:
S
Steffy-zxf 已提交
1337
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1338 1339 1340
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1341
        Tensor, the natural log of the input Tensor computed element-wise.
1342

1343 1344
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1345

1346
            import paddle
S
Steffy-zxf 已提交
1347 1348 1349 1350

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1351 1352 1353 1354 1355 1356 1357 1358 1359
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1360
    out = helper.create_variable_for_type_inference(dtype)
1361 1362
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1363

J
joejiong 已提交
1364
def log2(x, name=None):
1365
    r"""
J
joejiong 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1412

J
joejiong 已提交
1413 1414

def log10(x, name=None):
1415
    r"""
J
joejiong 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


W
WuHaobo 已提交
1464
def addcmul(input, tensor1, tensor2, value=1.0, name=None):
B
Bai Yifan 已提交
1465
    """
S
swtkiwi 已提交
1466

B
Bai Yifan 已提交
1467 1468 1469 1470 1471
    Calculate the element-wise multiplication of tensor1 and tensor2,
    then multiply the result by value, and add it to input. The shape of input,
    tensor1, tensor2 should be broadcastable.
    The equation is:
    ..  math::
1472

B
Bai Yifan 已提交
1473 1474
        out = input + value * tensor1 * tensor2
    Args:
1475 1476 1477
        input(Tensor): The input to be added. A Tensor with type float32, float64, int32, int64.
        tensor1(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
        tensor2(Tensor): The tensor to be multiplied. A Tensor with type float32, float64, int32, int64.
B
Bai Yifan 已提交
1478 1479 1480 1481
        value(int|float): The multiplier for tensor1*tensor2. For float32 and float64 type input, value must be float, otherwise an integer.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
    Returns:
1482
        out(Tensor): The output result. A Tensor with the same data type as input's.
B
Bai Yifan 已提交
1483 1484
    Examples:
        .. code-block:: python
1485

B
Bai Yifan 已提交
1486
          import paddle
1487 1488 1489
          input = paddle.ones([2,2])
          tensor1 = paddle.ones([2,2])
          tensor2 = paddle.ones([2,2])
1490
          out = paddle.tensor.math.addcmul(input, tensor1, tensor2, value=0.5)
N
Noel 已提交
1491
          print(out)
1492 1493
          # [[1.5 1.5]
          # [1.5 1.5]]
B
Bai Yifan 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    """

    check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor1, 'tensor1', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    check_variable_and_dtype(tensor2, 'tensor2', ['float32', 'float64', 'int32', 'int64'], 'addcmul')
    if convert_dtype(input.dtype) in ['float32', 'float64']:
        check_type(value, 'value', float, 'addcmul')
    if convert_dtype(input.dtype) in ['int32', 'int64']:
        check_type(value, 'value', int, 'addcmul')

W
WuHaobo 已提交
1504
    out = layers.elementwise_add(input, layers.elementwise_mul(tensor1, tensor2) * value)
B
Bai Yifan 已提交
1505
    return out
1506 1507


Y
Yang Zhang 已提交
1508
def clip(x, min=None, max=None, name=None):
1509
    """
Y
Yang Zhang 已提交
1510
    This operator clip all elements in input into the range [ min, max ] and return
1511 1512 1513 1514
    a resulting tensor as the following equation:

    .. math::

1515
        Out = MIN(MAX(x, min), max)
1516 1517

    Args:
Y
Yang Zhang 已提交
1518 1519
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1520
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1521
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1522 1523 1524 1525 1526 1527
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1528
        Tensor: A Tensor with the same data type and data shape as input.
1529 1530 1531 1532 1533

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1534

1535
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1536 1537
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1538
            print(out1)
Y
Yang Zhang 已提交
1539 1540
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1541
            print(out2)
Y
Yang Zhang 已提交
1542 1543
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1544 1545
    """

Y
Yang Zhang 已提交
1546 1547
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1548

W
WuHaobo 已提交
1549
    if in_dygraph_mode():
1550 1551 1552 1553
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1554 1555
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1556
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1557

1558
    if min is not None:
Y
Yang Zhang 已提交
1559
        check_type(min, 'min', (float, int, Variable), 'clip')
1560 1561
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1562
                        'clip', '(When the type of min in clip is Variable.)')
1563
    if max is not None:
Y
Yang Zhang 已提交
1564
        check_type(max, 'max', (float, int, Variable), 'clip')
1565 1566
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1567
                        'clip', '(When the type of max in clip is Variable.)')
1568

Y
Yang Zhang 已提交
1569
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1570 1571

    inputs = {'X': x}
Y
Yang Zhang 已提交
1572
    attrs = {'min': fmin, 'max': fmax}
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1586
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1587
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1588
        dtype=helper.input_dtype('x'))
1589 1590 1591 1592
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1593

W
WuHaobo 已提交
1594

1595
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1596
    """
1597
    **trace**
S
swtkiwi 已提交
1598

1599
    This OP computes the sum along diagonals of the input tensor x.
1600 1601

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1602

1603
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1604
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1605
    of the input tensor x.
L
Li Fuchen 已提交
1606

1607
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1608 1609 1610 1611

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1612
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1613

L
Li Fuchen 已提交
1614
    Args:
1615
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1616 1617 1618
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1619 1620 1621
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1622
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1623 1624 1625 1626 1627

    Examples:
        .. code-block:: python

            import paddle
1628

1629 1630 1631
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1632 1633 1634
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1635
    """
1636 1637
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1638 1639

    def __check_input(input, offset, dim1, dim2):
1640
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1641 1642 1643
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1644
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1645
        assert len(input_shape) >= 2,                     \
1646 1647
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1648 1649
                len(input_shape)

1650 1651
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1652

1653 1654 1655
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1656

1657 1658 1659
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1660 1661


1662 1663 1664
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1665

1666 1667 1668
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1669
    if not in_dygraph_mode():
1670
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1671 1672
    helper = LayerHelper('trace', **locals())

1673
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1674 1675 1676

    helper.append_op(
        type='trace',
1677
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1678
        attrs={'offset': offset,
1679 1680
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1681 1682 1683
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1684
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1685
def kron(x, y, name=None):
S
swtkiwi 已提交
1686 1687 1688
    """

${comment}
F
Feiyu Chan 已提交
1689 1690

    Args:
N
Noel 已提交
1691
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1692
            float64, int32 or int64.
N
Noel 已提交
1693
        y (Tensor): the second operand of kron op, data type: float16,
1694
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1695
            with x.
1696 1697
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1698 1699 1700
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1701
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1702 1703 1704

    Examples:
        .. code-block:: python
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1717 1718 1719 1720 1721 1722 1723 1724
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1725
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1726 1727
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1728 1729 1730 1731


def cumsum(x, axis=None, dtype=None, name=None):
    """
1732 1733 1734 1735
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1736 1737

    Args:
1738
        x (Tensor): The input tensor needed to be cumsumed.
1739 1740 1741 1742 1743
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1744
        Tensor, the result of cumsum operator. 
1745 1746 1747 1748 1749

    Examples:
        .. code-block:: python
            
            import paddle
1750 1751 1752
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1792

J
Jack Zhou 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1809

1810
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1811
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1812
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1838
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1839
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1840
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1866
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1867
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1868
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1879 1880 1881 1882 1883
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1884
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1894
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1904
    
G
guofei 已提交
1905 1906 1907 1908 1909 1910
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1911 1912
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1929 1930
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

1963
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1980
    r"""
W
WangXi 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

1999
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2000
            out = paddle.tanh(x)
N
Noel 已提交
2001
            print(out)
W
WangXi 已提交
2002 2003 2004 2005 2006 2007
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2008
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2009 2010 2011 2012
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2059
            Tensor with a single element, otherwise must be in the
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
N
Noel 已提交
2084
            # x is a bool Tensor with following elements:
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
            #    [[True, False]
            #     [True, True]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[False], [True]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2155
            Tensor with a single element, otherwise must be in the
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np
            
N
Noel 已提交
2180
            # x is a bool Tensor with following elements:
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
            #    [[True, False]
            #     [False, False]]
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            print(x)
            x = layers.cast(x, 'bool')
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keep_dim=True)
            out4 = layers.cast(out4, 'int32')  # [[True], [False]]
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)