qat.py 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.quant.quant_layers as quant_layers
25
from paddle.fluid import dygraph, core, framework, unique_name
26
from paddle.fluid.framework import IrGraph
27
from paddle.fluid.executor import Executor, global_scope
28 29
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
30 31
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
32
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
33
from paddle.fluid.log_helper import get_logger
34
from .. import quantization_pass
C
cc 已提交
35
from . import utils
36
from . import fuse_utils
37

C
cc 已提交
38
__all__ = ['ImperativeQuantAware']
39

40 41 42
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
43 44


45 46 47 48 49 50 51 52 53 54 55
def lazy_import_fleet(layer_name_map, fake_quant_input_layers):
    from paddle.distributed import fleet
    layer_name_map[
        'ColumnParallelLinear'] = fleet.meta_parallel.parallel_layers.mp_layers.ColumnParallelLinear
    layer_name_map[
        'RowParallelLinear'] = fleet.meta_parallel.parallel_layers.mp_layers.RowParallelLinear
    fake_quant_input_layers.append(fleet.meta_parallel.RowParallelLinear)
    fake_quant_input_layers.append(fleet.meta_parallel.ColumnParallelLinear)
    return layer_name_map, fake_quant_input_layers


56 57
class ImperativeQuantAware(object):
    """
58
    Applying quantization aware training (QAT) to the dgraph model.
59 60
    """

61
    def __init__(self,
62 63 64 65
                 quantizable_layer_type=[
                     'Conv2D', 'Linear', 'Conv2DTranspose',
                     'ColumnParallelLinear', 'RowParallelLinear'
                 ],
66 67 68 69 70 71 72 73 74 75
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 fuse_conv_bn=False,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
76
        """
77 78 79
        The constructor for ImperativeQuantAware.

        Args:
80 81
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
82
            weight_quantize_type(str): quantization type for weights,
83
                which supports 'abs_max' and 'channel_wise_abs_max'.
84 85
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
86 87 88 89 90
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
91 92
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
93 94 95
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
96
            fuse_conv_bn(bool): Whether to fuse conv and bn, default is False.
C
cc 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
113 114 115
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
116 117 118 119 120
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
121 122 123
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
124
                activation and returns dequantized activation.
C
cc 已提交
125 126
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
127

128
        Note:
C
cc 已提交
129 130 131 132
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
133 134

        Examples 1:
135 136
        .. code-block:: python

137
            import paddle
138 139
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
140
            from paddle.vision.models \
141
                import resnet
142

143 144 145 146 147
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
148

149 150
            # Add the fake quant logical.
            # The original model will be rewrite.
151
            # The outscale of outputs in supportted layers would be calculated.
152 153 154 155
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
156

157
            # Save quant model for the inference.
158
            imperative_qat.save_quantized_model(
159 160 161 162 163
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
207 208
        """
        super(ImperativeQuantAware, self).__init__()
209
        self.fuse_conv_bn = fuse_conv_bn
H
huangxu96 已提交
210

C
cc 已提交
211 212 213 214 215 216 217 218 219 220 221
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
222
        }
C
cc 已提交
223 224 225

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

226 227
        self._quantize_outputs = ImperativeQuantizeOutputs(
            moving_rate, activation_bits)
228 229 230

    def quantize(self, model):
        """
C
cc 已提交
231 232 233 234 235
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
236 237

        Args:
238
            model(paddle.nn.Layer): the model to be quantized.
239 240
        Returns:
            None
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
276
        """
C
cc 已提交
277 278
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
279 280 281 282

        if self.fuse_conv_bn:
            fuse_utils.fuse_conv_bn(model)

C
cc 已提交
283
        self._quantize_inputs.apply(model)
284
        self._quantize_outputs.apply(model)
285
        return model
C
cc 已提交
286 287

    def save_quantized_model(self, layer, path, input_spec=None, **config):
288 289
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
290 291 292 293 294 295 296 297


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

298 299 300 301 302 303 304 305 306 307 308
    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
309
        """
310
        The constructor for ImperativeQuantizeInputs.
C
cc 已提交
311 312 313 314

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()
315 316
        self.layer_name_map, self.fake_quant_input_layers = lazy_import_fleet(
            utils.layer_name_map, utils.fake_quant_input_layers)
C
cc 已提交
317 318

        self._quantizable_layer_type = tuple(
319 320
            self.layer_name_map[layer] if layer in
            self.layer_name_map else layer for layer in quantizable_layer_type)
C
cc 已提交
321
        for layer in self._quantizable_layer_type:
322
            assert not isinstance(layer, str) \
323
                and layer in self.fake_quant_input_layers, \
C
cc 已提交
324 325 326 327 328
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
329 330
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
331
            "Unsupported weight_quantize_type: %s. It can only " \
332 333 334
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
335
            "Unsupported activation_quantize_type: %s. It can " \
336
            "only be moving_average_abs_max now." \
C
cc 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
370
        """
371
        Quantize the weights and activations to calculate for specific
372 373 374 375 376 377 378 379 380 381
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

C
cc 已提交
382 383 384
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

385 386 387 388
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
389 390
                continue

391 392 393 394 395
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
396

397
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
398
        quant_layer_name = None
399

400
        for key, value in self.layer_name_map.items():
C
cc 已提交
401 402 403 404 405 406
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
407

408
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
409

410

411 412
class ImperativeQuantizeOutputs(object):
    """
413
    Calculate the output scales for target layers.
414 415
    """

416
    def __init__(self, moving_rate=0.9, activation_bits=8):
417
        """
418
        The constructor for ImperativeQuantizeOutputs.
419 420

        Args:
C
cc 已提交
421 422
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
423
            activation_bits(int, optional): quantization bit number for activation. Default is 8.
424
        """
425
        super(ImperativeQuantizeOutputs, self).__init__()
426
        self._moving_rate = moving_rate
427
        self._activation_bits = activation_bits
428

C
cc 已提交
429
    def apply(self, model):
430
        """
431 432
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
433 434

        Args:
435
            model(paddle.nn.Layer): The target model which would be
436
                calculate the output quantization scale.
437 438 439 440

        Returns:
            None
        """
C
cc 已提交
441 442
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
443

444
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
445 446
            if '_act_preprocess' in cur_name:
                continue
447
            if not self._is_target_layer(cur_layer):
448 449
                continue

450 451 452
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

453 454
            reduce_type = None

455
            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
456
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
457
                    cur_layer, self._moving_rate, reduce_type=reduce_type)
458
            else:
459
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
460
                    cur_layer, self._moving_rate, reduce_type=reduce_type)
461 462

            setattr(parent_layer, sub_name, cur_quant_layer)
463

464 465 466 467 468 469
    def save_quantized_model(self,
                             model,
                             path,
                             input_spec=None,
                             onnx_format=False,
                             **config):
470 471 472 473
        """
        Save the quantized model for the inference.

        Args:
474
            model (Layer): The model to be saved.
475
            path (str): The path prefix to save model. The format is
476 477 478
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
479
                InputSpec or example Tensor. If None, all input variables of
480 481
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
482
            onnx_format (bool, optional): Whether to export the quantized model
483
                with format of ONNX. Default is False.
484
            **config (dict, optional): Other save configuration options for
485 486 487
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
488
                The following options are currently supported:
489 490 491
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
492
                If the provided ``output_spec`` list is not all output variables,
493
                the saved model will be pruned according to the given
494
                ``output_spec`` list.
495 496 497 498

        Returns:
            None
        """
499
        assert isinstance(model, dygraph.Layer), \
500 501
            "The model must be the instance of dygraph.Layer."

502
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
503 504

        is_dynamic_mode = False
505 506 507 508
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

509 510
        place = core.CPUPlace()
        scope = global_scope()
511 512 513
        exe = Executor(place)

        dirname = os.path.dirname(path)
514 515 516
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
517

518 519 520 521 522
        [infer_program, feed_target_names, fetch_targets
         ] = (load_inference_model(dirname=dirname,
                                   executor=exe,
                                   model_filename=model_filename,
                                   params_filename=params_filename))
523

524 525
        if not onnx_format:
            self._gather_scales(infer_program, scope, fetch_targets)
526

527 528 529 530 531 532 533 534
            # Remove `moving_average_abs_max_scale` node in sub graphs.
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
            for sub_graph in graph.all_sub_graphs():
                for _op in sub_graph.all_op_nodes():
                    if _op.name() == "moving_average_abs_max_scale":
                        sub_graph.safe_remove_nodes(_op)
                sub_graph.resolve_hazard()
            infer_program = graph.to_program()
535

536
            self._set_skip_quant_attr(infer_program)
G
guofei 已提交
537

538 539
            clip_extra = False
        else:
540
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
541 542
            transform_pass = ReplaceFakeQuantDequantPass(
                scope, place, quant_bits=self._activation_bits)
543 544 545 546
            transform_pass.apply(graph)

            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
547

548 549 550 551
            infer_program = graph.to_program()

            clip_extra = True

552 553 554 555 556 557 558 559
        save_inference_model(dirname=dirname,
                             feeded_var_names=feed_target_names,
                             target_vars=fetch_targets,
                             executor=exe,
                             main_program=infer_program.clone(),
                             model_filename=model_filename,
                             params_filename=params_filename,
                             clip_extra=clip_extra)
560

561 562 563
        if is_dynamic_mode:
            paddle.disable_static()

564
    def _is_target_layer(self, layer):
565
        """
566
        Whether the layer needs to calculate output scales.
567
        """
568 569
        flag = False
        if isinstance(layer, dygraph.Layer):
570
            # exclude fake_quant ops in quant_layers file
571 572 573
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
574

575 576
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
577 578 579 580

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

581
        return flag
C
cc 已提交
582

583
    def _gather_scales(self, program, scope, fetch_targets):
584
        """
585
        Get all scales from fake ops, save them into the corresponding ops
586
        and delete all moving_average_abs_max_scale ops.
587
        """
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)
612
                        op._set_attr("with_quant_attr", True)
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
633 634 635 636 637 638
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
                            argname + str(index) + "_threshold", out_scale)
                        previous_op._set_attr("out_threshold", out_scale)
639
                        previous_op._set_attr("with_quant_attr", True)
640 641 642

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
643 644 645 646 647
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
648 649 650

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
651

652
    def _set_skip_quant_attr(self, program):
653
        """
654
        Label the skip quantized ops.
655
        """
656 657 658 659
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
660
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
661 662 663 664 665 666 667

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
668 669 670
        target_op_types = [
            "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose"
        ]
G
guofei 已提交
671 672 673
        if in_op.type not in target_op_types:
            return False

674
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
675
            for arg_name in in_op.input_arg_names]
676
        return any(op is not None and op.type not in \
677
            utils.fake_quantize_dequantize_op_types for op in previous_ops)