qat.py 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.quant.quant_layers as quant_layers
25
from paddle.fluid import dygraph, core, framework, unique_name
26
from paddle.fluid.framework import IrGraph
27
from paddle.fluid.executor import Executor, global_scope
28 29
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
30 31
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
32
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
33
from paddle.fluid.log_helper import get_logger
34
from .. import quantization_pass
C
cc 已提交
35
from . import utils
36
from . import fuse_utils
37

C
cc 已提交
38
__all__ = ['ImperativeQuantAware']
39

40 41 42
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
43 44 45 46


class ImperativeQuantAware(object):
    """
47
    Applying quantization aware training (QAT) to the dgraph model.
48 49
    """

50 51 52 53 54 55 56 57 58 59 60 61
    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 fuse_conv_bn=False,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
62
        """
63 64 65
        The constructor for ImperativeQuantAware.

        Args:
66 67
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
68
            weight_quantize_type(str): quantization type for weights,
69
                which supports 'abs_max' and 'channel_wise_abs_max'.
70 71
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
72 73 74 75 76
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
77 78
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
79 80 81
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
82
            fuse_conv_bn(bool): Whether to fuse conv and bn, default is False.
C
cc 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
99 100 101
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
102 103 104 105 106
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
107 108 109
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
110 111 112
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
113

114
        Note:
C
cc 已提交
115 116 117 118
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
119 120

        Examples 1:
121 122
        .. code-block:: python

123
            import paddle
124 125
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
126
            from paddle.vision.models \
127 128 129 130 131 132 133 134 135 136
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
137
            # The outscale of outputs in supportted layers would be calculated.
138 139 140 141 142 143
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
144
            imperative_qat.save_quantized_model(
145 146 147 148 149
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
193 194
        """
        super(ImperativeQuantAware, self).__init__()
195
        self.fuse_conv_bn = fuse_conv_bn
H
huangxu96 已提交
196

C
cc 已提交
197 198 199 200 201 202 203 204 205 206 207
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
208
        }
C
cc 已提交
209 210 211

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

X
XGZhang 已提交
212
        self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate)
213 214 215

    def quantize(self, model):
        """
C
cc 已提交
216 217 218 219 220
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
221 222

        Args:
223
            model(paddle.nn.Layer): the model to be quantized.
224 225
        Returns:
            None
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
261
        """
C
cc 已提交
262 263
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
264 265 266 267

        if self.fuse_conv_bn:
            fuse_utils.fuse_conv_bn(model)

C
cc 已提交
268
        self._quantize_inputs.apply(model)
269
        self._quantize_outputs.apply(model)
270
        return model
C
cc 已提交
271 272

    def save_quantized_model(self, layer, path, input_spec=None, **config):
273 274
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
275 276 277 278 279 280 281 282


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

283 284 285 286 287 288 289 290 291 292 293
    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
294 295 296 297 298 299 300 301
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
302 303
            utils.layer_name_map[layer] if layer in
            utils.layer_name_map else layer for layer in quantizable_layer_type)
C
cc 已提交
304
        for layer in self._quantizable_layer_type:
305 306
            assert not isinstance(layer, str) \
                and layer in utils.fake_quant_input_layers, \
C
cc 已提交
307 308 309 310 311
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
312 313
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
314
            "Unsupported weight_quantize_type: %s. It can only " \
315 316 317
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
318
            "Unsupported activation_quantize_type: %s. It can " \
319
            "only be moving_average_abs_max now." \
C
cc 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
353 354 355 356 357 358 359 360 361 362 363 364
        """
        Quantize the weights and activations to calculate for specific 
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

C
cc 已提交
365 366 367
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

368 369 370 371
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
372 373
                continue

374 375 376 377 378
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
379

380
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
381
        quant_layer_name = None
382 383

        for key, value in utils.layer_name_map.items():
C
cc 已提交
384 385 386 387 388 389
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
390

391
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
392

393

394 395
class ImperativeQuantizeOutputs(object):
    """
396
    Calculate the output scales for target layers.
397 398
    """

399
    def __init__(self, moving_rate=0.9):
400
        """
401
        The constructor for ImperativeQuantizeOutputs.
402 403

        Args:
C
cc 已提交
404 405
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
406
        """
407
        super(ImperativeQuantizeOutputs, self).__init__()
408 409
        self._moving_rate = moving_rate

C
cc 已提交
410
    def apply(self, model):
411
        """
412 413
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
414 415

        Args:
416
            model(paddle.nn.Layer): The target model which would be
417
                calculate the output quantization scale.
418 419 420 421

        Returns:
            None
        """
C
cc 已提交
422 423
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
424

425
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
426 427
            if '_act_preprocess' in cur_name:
                continue
428
            if not self._is_target_layer(cur_layer):
429 430
                continue

431 432 433 434
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
435
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
436 437
                    cur_layer, self._moving_rate)
            else:
438 439
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
                    cur_layer, self._moving_rate)
440 441

            setattr(parent_layer, sub_name, cur_quant_layer)
442

443 444 445 446 447 448
    def save_quantized_model(self,
                             model,
                             path,
                             input_spec=None,
                             onnx_format=False,
                             **config):
449 450 451 452
        """
        Save the quantized model for the inference.

        Args:
453
            model (Layer): The model to be saved.
454 455 456 457 458 459 460
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
461 462
            onnx_format (bool, optional): Whether to export the quantized model 
                with format of ONNX. Default is False.
463 464 465 466
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
467
                The following options are currently supported:
468 469 470 471 472 473
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
474 475 476 477

        Returns:
            None
        """
478
        assert isinstance(model, dygraph.Layer), \
479 480
            "The model must be the instance of dygraph.Layer."

481
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
482 483

        is_dynamic_mode = False
484 485 486 487
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

488 489
        place = core.CPUPlace()
        scope = global_scope()
490 491 492
        exe = Executor(place)

        dirname = os.path.dirname(path)
493 494 495
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
496

497 498 499 500 501
        [infer_program, feed_target_names, fetch_targets
         ] = (load_inference_model(dirname=dirname,
                                   executor=exe,
                                   model_filename=model_filename,
                                   params_filename=params_filename))
502

503
        self._gather_scales(infer_program, scope, fetch_targets)
504

505 506 507 508 509 510 511 512 513
        # Remove `moving_average_abs_max_scale` node in sub graphs.
        graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
        for sub_graph in graph.all_sub_graphs():
            for _op in sub_graph.all_op_nodes():
                if _op.name() == "moving_average_abs_max_scale":
                    sub_graph.safe_remove_nodes(_op)
            sub_graph.resolve_hazard()
        infer_program = graph.to_program()

514
        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
515

516 517 518 519 520 521 522 523 524 525 526 527
        clip_extra = False
        if onnx_format:
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
            transform_pass = ReplaceFakeQuantDequantPass(scope, place)
            transform_pass.apply(graph)

            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
            infer_program = graph.to_program()

            clip_extra = True

528 529 530 531 532 533 534 535
        save_inference_model(dirname=dirname,
                             feeded_var_names=feed_target_names,
                             target_vars=fetch_targets,
                             executor=exe,
                             main_program=infer_program.clone(),
                             model_filename=model_filename,
                             params_filename=params_filename,
                             clip_extra=clip_extra)
536

537 538 539
        if is_dynamic_mode:
            paddle.disable_static()

540
    def _is_target_layer(self, layer):
541
        """
542
        Whether the layer needs to calculate output scales.
543
        """
544 545
        flag = False
        if isinstance(layer, dygraph.Layer):
546
            # exclude fake_quant ops in quant_layers file
547 548 549
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
550

551 552
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
553 554 555 556

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

557
        return flag
C
cc 已提交
558

559
    def _gather_scales(self, program, scope, fetch_targets):
560
        """
561
        Get all scales from fake ops, save them into the corresponding ops
562
        and delete all moving_average_abs_max_scale ops.
563
        """
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)
588
                        op._set_attr("with_quant_attr", True)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
609 610 611 612 613 614
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
                            argname + str(index) + "_threshold", out_scale)
                        previous_op._set_attr("out_threshold", out_scale)
615
                        previous_op._set_attr("with_quant_attr", True)
616 617 618

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
619 620 621 622 623
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
624 625 626

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
627

628
    def _set_skip_quant_attr(self, program):
629
        """
630
        Label the skip quantized ops.
631
        """
632 633 634 635
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
636
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
637 638 639 640 641 642 643

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
644 645 646
        target_op_types = [
            "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose"
        ]
G
guofei 已提交
647 648 649
        if in_op.type not in target_op_types:
            return False

650
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
651
            for arg_name in in_op.input_arg_names]
652
        return any(op is not None and op.type not in \
653
            utils.fake_quantize_dequantize_op_types for op in previous_ops)