Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
63840227
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
63840227
编写于
11月 27, 2020
作者:
G
guofei
提交者:
GitHub
11月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Integrate ImperativeOutScale into ImperativeQuantAware. (#27956)
* Optimiz the unittest test_imperative_out_scale test=develop
上级
b9e76a01
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
384 addition
and
204 deletion
+384
-204
python/paddle/fluid/contrib/slim/quantization/imperative/qat.py
.../paddle/fluid/contrib/slim/quantization/imperative/qat.py
+82
-51
python/paddle/fluid/contrib/slim/tests/test_imperative_out_scale.py
...dle/fluid/contrib/slim/tests/test_imperative_out_scale.py
+74
-152
python/paddle/fluid/contrib/slim/tests/test_imperative_skip_op.py
...addle/fluid/contrib/slim/tests/test_imperative_skip_op.py
+227
-0
python/paddle/fluid/contrib/slim/tests/test_moving_average_abs_max_scale_op.py
...ontrib/slim/tests/test_moving_average_abs_max_scale_op.py
+1
-1
未找到文件。
python/paddle/fluid/contrib/slim/quantization/imperative/qat.py
浏览文件 @
63840227
...
...
@@ -23,9 +23,10 @@ from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from
paddle.nn
import
Linear
,
Conv2D
from
paddle.fluid.dygraph.nn
import
BatchNorm
,
Pool2D
,
Conv2DTranspose
from
paddle.fluid.io
import
load_inference_model
,
save_inference_model
from
paddle.nn.layer.activation
import
ReLU
,
LeakyReLU
,
Sigmoid
,
ReLU6
,
Tanh
,
Softmax
,
PReLU
from
paddle.nn.layer.activation
import
ReLU
,
LeakyReLU
,
Sigmoid
,
ReLU6
,
Tanh
,
Softmax
,
PReLU
,
Swish
from
paddle.fluid.log_helper
import
get_logger
from
.
import
quant_nn
from
..
import
quantization_pass
__all__
=
[
'ImperativeQuantAware'
,
'ImperativeCalcOutScale'
]
...
...
@@ -45,6 +46,7 @@ _op_real_in_out_name = {
"tanh"
:
[[
"X"
],
[
"Out"
]],
"batch_norm"
:
[[
"X"
],
[
"Y"
]],
"sigmoid"
:
[[
"X"
],
[
"Out"
]],
"swish"
:
[[
"X"
],
[
"Out"
]],
}
...
...
@@ -109,7 +111,12 @@ class ImperativeQuantAware(object):
activation and returns dequantized activation. If None, will use
quantization op defined by 'activation_quantize_type'. Default is None.
Examples:
Note:
If user sets attribute 'skip_quant' to a Layer that support dynamic quantization and sets
it to true, the layer would not be quantized during training. If this attribute is not sets
or the attribute is false, the Layer would be qunatized in training.
Examples 1:
.. code-block:: python
import paddle
...
...
@@ -126,18 +133,62 @@ class ImperativeQuantAware(object):
# Add the fake quant logical.
# The original model will be rewrite.
# The outscale of outputs in supportted layers would be calculated.
imperative_qat.quantize(model)
# Fine-tune the quantized model
# ...
# Save quant model for the inference.
paddle.jit.save
(
imperative_qat.save_quantized_model
(
layer=model,
model_path="./resnet50_qat",
input_spec=[
paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype='float32')])
Examples 2:
.. code-block:: python
import paddle
from paddle.fluid.contrib.slim.quantization \
import ImperativeQuantAware
class ImperativeModel(paddle.nn.Layer):
def __init__(self):
super(ImperativeModel, self).__init__()
# self.linear_0 would skip the quantization.
self.linear_0 = paddle.nn.Linear(784, 400)
self.linear_0.skip_quant = True
# self.linear_1 would not skip the quantization.
self.linear_1 = paddle.nn.Linear(400, 10)
self.linear_1.skip_quant = False
def forward(self, inputs):
x = self.linear_0(inputs)
x = self.linear_1(inputs)
return x
model = ImperativeModel()
imperative_qat = ImperativeQuantAware(
weight_quantize_type='abs_max',
activation_quantize_type='moving_average_abs_max')
# Add the fake quant logical.
# The original model will be rewrite.
#
# There is only one Layer(self.linear1) would be added the
# fake quant logical.
imperative_qat.quantize(model)
# Fine-tune the quantized model
# ...
# Save quant model for the inference.
imperative_qat.save_quantized_model(
layer=model,
model_path="./imperative_model_qat")
"""
super
(
ImperativeQuantAware
,
self
).
__init__
()
self
.
_weight_bits
=
weight_bits
...
...
@@ -150,6 +201,7 @@ class ImperativeQuantAware(object):
self
.
_act_pre_layer
=
act_preprocess_layer
self
.
_weight_quant_layer
=
weight_quantize_layer
self
.
_act_quant_layer
=
act_quantize_layer
self
.
_out_scale
=
ImperativeCalcOutScale
()
t_check
=
lambda
method
:
method
is
None
or
issubclass
(
method
,
dygraph
.
layers
.
Layer
)
assert
t_check
(
...
...
@@ -189,7 +241,7 @@ class ImperativeQuantAware(object):
"""
According to weights' and activations' quantization types, the model will be added some fake
quant ops, such as fake_quantize_dequantize_moving_average_abs_max, fake_quantize_dequantize_abs_max
and so on.
and so on.
At the same time, the out_scale value of outputs would be calculated.
Args:
model(fluid.dygraph.Layer): the model to be quantized.
...
...
@@ -199,6 +251,9 @@ class ImperativeQuantAware(object):
for
name
,
layer
in
model
.
named_sublayers
():
if
not
isinstance
(
layer
,
self
.
_quantizable_layer_type
):
continue
if
hasattr
(
layer
,
"skip_quant"
)
and
layer
.
skip_quant
==
True
:
continue
scopes
=
name
.
split
(
'.'
)
target
=
scopes
[
-
1
]
obj
=
model
...
...
@@ -210,6 +265,8 @@ class ImperativeQuantAware(object):
quant_layer
=
self
.
_get_quantized_counterpart
(
layer
)
setattr
(
obj
,
target
,
quant_layer
)
self
.
_out_scale
.
calc_out_scale
(
model
)
def
_get_quantized_counterpart
(
self
,
layer
):
quant_layers
=
tuple
(
self
.
_quant_layers_map
.
values
())
quantized_counterpart
=
tuple
(
'Quantized'
+
k
...
...
@@ -233,47 +290,24 @@ class ImperativeQuantAware(object):
self
.
_weight_quant_layer
,
self
.
_act_quant_layer
)
return
quantized_layer
def
save_quantized_model
(
self
,
layer
,
path
,
input_spec
=
None
,
**
config
):
self
.
_out_scale
.
save_quantized_model
(
layer
,
path
,
input_spec
,
**
config
)
class
ImperativeCalcOutScale
(
object
):
def
__init__
(
self
,
moving_rate
=
0.9
,
target_layer_types
=
[
'BatchNorm'
,
'Conv2D'
,
'Conv2DTranspose'
,
'LeakyReLU'
,
'Linear'
,
'PReLU'
,
'Pool2D'
,
'ReLU'
,
'ReLU6'
,
'Sigmoid'
,
'Softmax'
,
'Tanh'
]):
def
__init__
(
self
,
moving_rate
=
0.9
):
"""
Add the logic of calculating and setting output quantization scales of some layers.
These output quantization scales may be used by tensorRT or some other inference engines.
Args:
moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
quantizable_op_type(list[str]): List the type of layers that will be calculated out_scale.
Default is ['Conv2D', 'ReLU', 'PReLU', 'LeakyReLU', 'Linear', 'Sigmoid', 'BatchNorm', 'ReLU6', 'Tanh', 'Softmax', 'Conv2DTranspose']
"""
super
(
ImperativeCalcOutScale
,
self
).
__init__
()
self
.
_moving_rate
=
moving_rate
self
.
_out_scale_layers_map
=
{
'BatchNorm'
:
BatchNorm
,
'Conv2D'
:
Conv2D
,
'Conv2DTranspose'
:
Conv2DTranspose
,
'LeakyReLU'
:
LeakyReLU
,
'Linear'
:
Linear
,
'PReLU'
:
PReLU
,
'Pool2D'
:
Pool2D
,
'ReLU'
:
ReLU
,
'ReLU6'
:
ReLU6
,
'Sigmoid'
:
Sigmoid
,
'Softmax'
:
Softmax
,
'Tanh'
:
Tanh
}
self
.
_out_scale_layer_type
=
tuple
(
self
.
_out_scale_layers_map
[
layer
]
if
layer
in
self
.
_out_scale_layers_map
else
layer
for
layer
in
target_layer_types
)
for
layer
in
self
.
_out_scale_layer_type
:
assert
not
isinstance
(
layer
,
str
),
"{} is unspported to be out_scaled."
.
format
(
layer
)
self
.
_out_scale_layer_type_list
=
(
BatchNorm
,
Conv2D
,
Conv2DTranspose
,
LeakyReLU
,
Linear
,
PReLU
,
Pool2D
,
ReLU
,
ReLU6
,
Sigmoid
,
Softmax
,
Tanh
,
Swish
)
self
.
_register_hook_handle_list
=
[]
self
.
_out_scale_dict
=
{}
...
...
@@ -290,26 +324,12 @@ class ImperativeCalcOutScale(object):
assert
isinstance
(
model
,
dygraph
.
Layer
),
"model must be the instance of dygraph.Layer"
for
_
,
layer
in
model
.
named_sublayers
():
if
not
isinstance
(
layer
,
self
.
_out_scale_layer_type
):
if
not
isinstance
(
layer
,
self
.
_out_scale_layer_type
_list
):
continue
forward_post_hook_handle
=
layer
.
register_forward_post_hook
(
self
.
_forward_post_hook
)
self
.
_register_hook_handle_list
.
append
(
forward_post_hook_handle
)
# Get the output var name of the op
def
_get_op_output_names
(
self
,
op
):
assert
isinstance
(
op
,
framework
.
Operator
),
"The input op should be Operator."
var_names
=
[]
name_list
=
_op_real_in_out_name
[
op
.
type
][
1
]
for
name
in
name_list
:
var_name
=
op
.
output
(
name
)
if
isinstance
(
var_name
,
list
):
var_names
.
extend
(
var_name
)
else
:
var_names
.
append
(
var_name
)
return
var_names
def
save_quantized_model
(
self
,
layer
,
path
,
input_spec
=
None
,
**
config
):
"""
Save the quantized model for the inference.
...
...
@@ -335,6 +355,7 @@ class ImperativeCalcOutScale(object):
assert
isinstance
(
layer
,
dygraph
.
Layer
),
"model must be the instance of dygraph.Layer"
is_dynamic_mode
=
False
with
dygraph
.
guard
():
layer
.
eval
()
for
handle
in
self
.
_register_hook_handle_list
:
...
...
@@ -345,6 +366,10 @@ class ImperativeCalcOutScale(object):
paddle
.
jit
.
save
(
layer
=
layer
,
path
=
path
,
input_spec
=
input_spec
,
**
config
)
if
paddle
.
in_dynamic_mode
():
is_dynamic_mode
=
True
paddle
.
enable_static
()
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
...
...
@@ -369,7 +394,8 @@ class ImperativeCalcOutScale(object):
for
block
in
inference_program
.
blocks
:
for
op
in
block
.
ops
:
if
op
.
type
in
_op_real_in_out_name
:
output_var_names
=
self
.
_get_op_output_names
(
op
)
output_var_names
=
quantization_pass
.
_get_op_output_var_names
(
op
)
for
output_var_name
in
output_var_names
:
output_var_tensor
=
block
.
var
(
output_var_name
)
if
output_var_tensor
.
dtype
not
in
[
...
...
@@ -386,6 +412,8 @@ class ImperativeCalcOutScale(object):
# to dygraph Layer by the name of output. And use dict to save
# the corresponding relationship between the dygraph Layer and the
# static graph op that needs to set the outscale attribute.
if
'.'
not
in
output_var_name
:
continue
dynamic_layer_name
,
var_name_suffix
=
output_var_name
.
split
(
"."
)
if
dynamic_layer_name
in
layer_var_dict
:
...
...
@@ -420,9 +448,12 @@ class ImperativeCalcOutScale(object):
model_filename
=
model_filename
,
params_filename
=
params_filename
)
if
is_dynamic_mode
:
paddle
.
disable_static
()
def
_forward_post_hook
(
self
,
layer
,
input
,
output
):
assert
isinstance
(
output
,
core
.
VarBase
output
,
(
core
.
VarBase
,
framework
.
Variable
)
),
"Multiple outputs are not currently supported in ImperativeOutScale."
if
output
.
dtype
not
in
[
core
.
VarDesc
.
VarType
.
FP32
,
core
.
VarDesc
.
VarType
.
FP64
...
...
python/paddle/fluid/contrib/slim/tests/test_imperative_out_scale.py
浏览文件 @
63840227
...
...
@@ -25,12 +25,13 @@ import paddle.fluid.layers as layers
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
AdamOptimizer
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.contrib.slim.quantization
import
Imperative
CalcOutScal
e
from
paddle.fluid.contrib.slim.quantization
import
OutScaleForTrainingPass
,
OutScaleForInferencePass
from
paddle.fluid.contrib.slim.quantization
import
Imperative
QuantAwar
e
from
paddle.fluid.contrib.slim.quantization
import
OutScaleForTrainingPass
,
OutScaleForInferencePass
,
QuantizationTransformPass
from
paddle.fluid.dygraph.container
import
Sequential
from
paddle.fluid.dygraph.io
import
INFER_MODEL_SUFFIX
,
INFER_PARAMS_SUFFIX
from
paddle.nn.layer
import
ReLU
,
LeakyReLU
,
Sigmoid
,
Softmax
,
ReLU6
from
paddle.fluid.dygraph.nn
import
BatchNorm
,
Conv2D
,
Linear
,
Pool2D
from
paddle.nn
import
Linear
,
Conv2D
,
Softmax
,
BatchNorm
from
paddle.fluid.dygraph.nn
import
Pool2D
from
paddle.fluid.log_helper
import
get_logger
paddle
.
enable_static
()
...
...
@@ -91,10 +92,10 @@ def StaticLenet(data, num_classes=10, classifier_activation='softmax'):
sigmoid1
=
layers
.
sigmoid
(
fc2
)
fc3
=
fluid
.
layers
.
fc
(
input
=
sigmoid1
,
size
=
num_classes
,
act
=
classifier_activation
,
param_attr
=
fc_w3_attr
,
bias_attr
=
fc_b3_attr
)
return
fc3
softmax1
=
layers
.
softmax
(
fc3
,
use_cudnn
=
True
)
return
softmax1
class
ImperativeLenet
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -112,24 +113,24 @@ class ImperativeLenet(fluid.dygraph.Layer):
fc_b3_attr
=
fluid
.
ParamAttr
(
name
=
"fc_b_3"
)
self
.
features
=
Sequential
(
Conv2D
(
num
_channels
=
1
,
num_filter
s
=
6
,
filter
_size
=
3
,
in
_channels
=
1
,
out_channel
s
=
6
,
kernel
_size
=
3
,
stride
=
1
,
padding
=
1
,
param
_attr
=
conv2d_w1_attr
,
weight
_attr
=
conv2d_w1_attr
,
bias_attr
=
conv2d_b1_attr
),
BatchNorm
(
6
),
ReLU
(),
Pool2D
(
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
),
Conv2D
(
num
_channels
=
6
,
num_filter
s
=
16
,
filter
_size
=
5
,
in
_channels
=
6
,
out_channel
s
=
16
,
kernel
_size
=
5
,
stride
=
1
,
padding
=
0
,
param
_attr
=
conv2d_w2_attr
,
weight
_attr
=
conv2d_w2_attr
,
bias_attr
=
conv2d_b2_attr
),
BatchNorm
(
16
),
ReLU6
(),
...
...
@@ -138,23 +139,23 @@ class ImperativeLenet(fluid.dygraph.Layer):
self
.
fc
=
Sequential
(
Linear
(
in
put_dim
=
400
,
out
put_dim
=
120
,
param
_attr
=
fc_w1_attr
,
in
_features
=
400
,
out
_features
=
120
,
weight
_attr
=
fc_w1_attr
,
bias_attr
=
fc_b1_attr
),
LeakyReLU
(),
Linear
(
in
put_dim
=
120
,
out
put_dim
=
84
,
param
_attr
=
fc_w2_attr
,
in
_features
=
120
,
out
_features
=
84
,
weight
_attr
=
fc_w2_attr
,
bias_attr
=
fc_b2_attr
),
Sigmoid
(),
Linear
(
in
put_dim
=
84
,
act
=
classifier_activation
,
output_dim
=
num_classes
,
param_attr
=
fc_w3_attr
,
bias_attr
=
fc_b3_attr
))
in
_features
=
84
,
out_features
=
num_classes
,
weight_attr
=
fc_w3_attr
,
bias_attr
=
fc_b3_attr
)
,
Softmax
(
))
def
forward
(
self
,
inputs
):
x
=
self
.
features
(
inputs
)
...
...
@@ -165,105 +166,6 @@ class ImperativeLenet(fluid.dygraph.Layer):
class
TestImperativeOutSclae
(
unittest
.
TestCase
):
def
test_calc_out_scale_save
(
self
):
imperative_out_scale
=
ImperativeCalcOutScale
()
with
fluid
.
dygraph
.
guard
():
lenet
=
ImperativeLenet
()
adam
=
AdamOptimizer
(
learning_rate
=
0.001
,
parameter_list
=
lenet
.
parameters
())
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
32
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
32
)
imperative_out_scale
.
calc_out_scale
(
lenet
)
epoch_num
=
1
for
epoch
in
range
(
epoch_num
):
lenet
.
train
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
img
=
fluid
.
dygraph
.
to_variable
(
x_data
)
label
=
fluid
.
dygraph
.
to_variable
(
y_data
)
out
=
lenet
(
img
)
acc
=
fluid
.
layers
.
accuracy
(
out
,
label
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
adam
.
minimize
(
avg_loss
)
lenet
.
clear_gradients
()
if
batch_id
%
100
==
0
:
_logger
.
info
(
"Train | At epoch {} step {}: loss = {:}, acc= {:}"
.
format
(
epoch
,
batch_id
,
avg_loss
.
numpy
(),
acc
.
numpy
()))
lenet
.
eval
()
for
batch_id
,
data
in
enumerate
(
test_reader
()):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
img
=
fluid
.
dygraph
.
to_variable
(
x_data
)
label
=
fluid
.
dygraph
.
to_variable
(
y_data
)
out
=
lenet
(
img
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
if
batch_id
%
100
==
0
:
_logger
.
info
(
"Test | At epoch {} step {}: acc1 = {:}, acc5 = {:}"
.
format
(
epoch
,
batch_id
,
acc_top1
.
numpy
(),
acc_top5
.
numpy
()))
# save weights
model_dict
=
lenet
.
state_dict
()
fluid
.
save_dygraph
(
model_dict
,
"save_temp"
)
# test the correctness of `save_quantized_model`
data
=
next
(
test_reader
())
test_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
test_img
=
fluid
.
dygraph
.
to_variable
(
test_data
)
lenet
.
eval
()
before_save
=
lenet
(
test_img
)
# save inference quantized model
path
=
"./outscale_infer_model/lenet"
save_dir
=
"./outscale_infer_model"
imperative_out_scale
.
save_quantized_model
(
layer
=
lenet
,
path
=
path
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
])
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
fluid
.
io
.
load_inference_model
(
dirname
=
save_dir
,
executor
=
exe
,
model_filename
=
"lenet"
+
INFER_MODEL_SUFFIX
,
params_filename
=
"lenet"
+
INFER_PARAMS_SUFFIX
))
after_save
,
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
test_data
},
fetch_list
=
fetch_targets
)
self
.
assertTrue
(
np
.
allclose
(
after_save
,
before_save
.
numpy
()),
msg
=
'Failed to save the inference quantized model.'
)
def
test_out_scale_acc
(
self
):
def
_build_static_lenet
(
main
,
startup
,
is_test
=
False
,
seed
=
1000
):
with
fluid
.
unique_name
.
guard
():
...
...
@@ -285,6 +187,8 @@ class TestImperativeOutSclae(unittest.TestCase):
reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
32
,
drop_last
=
True
)
weight_quantize_type
=
'abs_max'
activation_quant_type
=
'moving_average_abs_max'
param_init_map
=
{}
seed
=
1000
lr
=
0.1
...
...
@@ -295,7 +199,7 @@ class TestImperativeOutSclae(unittest.TestCase):
_logger
.
info
(
"--------------------------dynamic graph qat--------------------------"
)
imperative_out_scale
=
Imperative
CalcOutScal
e
()
imperative_out_scale
=
Imperative
QuantAwar
e
()
with
fluid
.
dygraph
.
guard
():
np
.
random
.
seed
(
seed
)
...
...
@@ -315,7 +219,7 @@ class TestImperativeOutSclae(unittest.TestCase):
fixed_state
[
name
]
=
value
param_init_map
[
param
.
name
]
=
value
lenet
.
set_dict
(
fixed_state
)
imperative_out_scale
.
calc_out_scal
e
(
lenet
)
imperative_out_scale
.
quantiz
e
(
lenet
)
adam
=
AdamOptimizer
(
learning_rate
=
lr
,
parameter_list
=
lenet
.
parameters
())
dynamic_loss_rec
=
[]
...
...
@@ -340,11 +244,9 @@ class TestImperativeOutSclae(unittest.TestCase):
_logger
.
info
(
'{}: {}'
.
format
(
'loss'
,
avg_loss
.
numpy
()))
lenet
.
eval
()
op_object_list
=
(
Conv2D
,
ReLU
,
ReLU6
,
LeakyReLU
,
Sigmoid
,
Pool2D
,
BatchNorm
)
path
=
"./dynamic_outscale_infer_model/lenet"
save_dir
=
"./dynamic_outscale_infer_model"
dynamic_
save_dir
=
"./dynamic_outscale_infer_model"
imperative_out_scale
.
save_quantized_model
(
layer
=
lenet
,
...
...
@@ -384,8 +286,16 @@ class TestImperativeOutSclae(unittest.TestCase):
param_tensor
.
set
(
param_init_map
[
param
.
name
],
place
)
main_graph
=
IrGraph
(
core
.
Graph
(
main
.
desc
),
for_test
=
False
)
infer_graph
=
IrGraph
(
core
.
Graph
(
infer
.
desc
),
for_test
=
True
)
transform_pass
=
OutScaleForTrainingPass
(
scope
=
scope
,
place
=
place
)
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quantize_type
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
])
transform_pass
.
apply
(
main_graph
)
transform_pass
.
apply
(
infer_graph
)
outscale_pass
=
OutScaleForTrainingPass
(
scope
=
scope
,
place
=
place
)
outscale_pass
.
apply
(
main_graph
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
fuse_all_reduce_ops
=
False
binary
=
fluid
.
CompiledProgram
(
main_graph
.
graph
).
with_data_parallel
(
...
...
@@ -404,20 +314,18 @@ class TestImperativeOutSclae(unittest.TestCase):
scale_inference_pass
=
OutScaleForInferencePass
(
scope
=
scope
)
scale_inference_pass
.
apply
(
infer_graph
)
out_scale_op_list
=
[
"batch_norm"
,
"conv2d"
,
"leaky_relu"
,
"pool2d"
,
"relu6"
,
"relu"
,
"sigmoid"
,
"tanh"
,
"relu6"
,
"softmax"
,
"conv2d_transpose"
,
"elementwise_add"
]
op_nodes
=
infer_graph
.
all_op_nodes
()
for
op_node
in
op_nodes
:
if
op_node
.
name
()
in
out_scale_op_list
:
static_out_scale_list
.
append
(
op_node
.
op
().
attr
(
"out_threshold"
))
save_program
=
infer_graph
.
to_program
()
static_save_dir
=
"./static_outscale_infer_model"
with
fluid
.
scope_guard
(
scope
):
fluid
.
io
.
save_inference_model
(
"./static_mnist"
,
[
infer_img
.
name
],
[
infer_pre
],
exe
,
save_program
)
fluid
.
io
.
save_inference_model
(
dirname
=
static_save_dir
,
feeded_var_names
=
[
infer_img
.
name
],
target_vars
=
[
infer_pre
],
executor
=
exe
,
main_program
=
save_program
,
model_filename
=
"lenet"
+
INFER_MODEL_SUFFIX
,
params_filename
=
"lenet"
+
INFER_PARAMS_SUFFIX
)
rtol
=
1e-05
atol
=
1e-08
for
i
,
(
loss_d
,
...
...
@@ -437,24 +345,38 @@ class TestImperativeOutSclae(unittest.TestCase):
atol
=
atol
,
equal_nan
=
True
),
msg
=
'Failed to do the imperative qat.'
)
# load dynamic model
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
[
dynamic_
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
fluid
.
io
.
load_inference_model
(
dirname
=
save_dir
,
dirname
=
dynamic_
save_dir
,
executor
=
exe
,
model_filename
=
"lenet"
+
INFER_MODEL_SUFFIX
,
params_filename
=
"lenet"
+
INFER_PARAMS_SUFFIX
))
# load static model
[
static_inference_program
,
feed_target_names
,
fetch_targets
]
=
(
fluid
.
io
.
load_inference_model
(
dirname
=
static_save_dir
,
executor
=
exe
,
model_filename
=
"lenet"
+
INFER_MODEL_SUFFIX
,
params_filename
=
"lenet"
+
INFER_PARAMS_SUFFIX
))
dynamic_ops
=
dynamic_inference_program
.
global_block
().
ops
static_ops
=
static_inference_program
.
global_block
().
ops
for
op
in
dynamic_ops
[:]:
if
op
.
type
==
"flatten2"
or
'fake'
in
op
.
type
:
dynamic_ops
.
remove
(
op
)
global_block
=
inference_program
.
global_block
()
for
op
in
global_block
.
ops
:
if
op
.
has_attr
(
'out_threshold'
):
dynamic_out_scale_list
.
append
(
op
.
attr
(
'out_threshold'
))
for
op
in
static_ops
[:]:
if
'fake'
in
op
.
type
:
static_ops
.
remove
(
op
)
check_list
=
[
False
for
item
in
dynamic_out_scale_list
if
item
not
in
static_out_scale_list
]
self
.
assertTrue
(
len
(
check_list
)
==
0
)
for
i
in
range
(
len
(
dynamic_ops
)):
if
dynamic_ops
[
i
].
has_attr
(
"out_threshold"
):
self
.
assertTrue
(
dynamic_ops
[
i
].
type
==
static_ops
[
i
].
type
)
self
.
assertTrue
(
dynamic_ops
[
i
].
attr
(
"out_threshold"
)
==
static_ops
[
i
].
attr
(
"out_threshold"
)
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/contrib/slim/tests/test_imperative_skip_op.py
0 → 100644
浏览文件 @
63840227
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
from
__future__
import
print_function
import
os
import
numpy
as
np
import
random
import
unittest
import
logging
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
AdamOptimizer
from
paddle.fluid.contrib.slim.quantization
import
ImperativeQuantAware
from
paddle.fluid.dygraph.io
import
INFER_MODEL_SUFFIX
,
INFER_PARAMS_SUFFIX
from
paddle.nn.layer
import
ReLU
,
LeakyReLU
,
Sigmoid
,
Softmax
,
ReLU6
from
paddle.nn
import
Linear
,
Conv2D
,
Softmax
,
BatchNorm
from
paddle.fluid.dygraph.nn
import
Pool2D
from
paddle.fluid.log_helper
import
get_logger
os
.
environ
[
"CPU_NUM"
]
=
"1"
if
core
.
is_compiled_with_cuda
():
fluid
.
set_flags
({
"FLAGS_cudnn_deterministic"
:
True
})
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
quant_skip_pattern_list
=
[
'skip_qat'
,
'skip_quant'
]
class
ImperativeLenet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
=
10
,
classifier_activation
=
'softmax'
):
super
(
ImperativeLenet
,
self
).
__init__
()
conv2d_w1_attr
=
fluid
.
ParamAttr
(
name
=
"conv2d_w_1"
)
conv2d_w2_attr
=
fluid
.
ParamAttr
(
name
=
"conv2d_w_2"
)
fc_w1_attr
=
fluid
.
ParamAttr
(
name
=
"fc_w_1"
)
fc_w2_attr
=
fluid
.
ParamAttr
(
name
=
"fc_w_2"
)
fc_w3_attr
=
fluid
.
ParamAttr
(
name
=
"fc_w_3"
)
conv2d_b1_attr
=
fluid
.
ParamAttr
(
name
=
"conv2d_b_1"
)
conv2d_b2_attr
=
fluid
.
ParamAttr
(
name
=
"conv2d_b_2"
)
fc_b1_attr
=
fluid
.
ParamAttr
(
name
=
"fc_b_1"
)
fc_b2_attr
=
fluid
.
ParamAttr
(
name
=
"fc_b_2"
)
fc_b3_attr
=
fluid
.
ParamAttr
(
name
=
"fc_b_3"
)
self
.
conv2d_0
=
Conv2D
(
in_channels
=
1
,
out_channels
=
6
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv2d_w1_attr
,
bias_attr
=
conv2d_b1_attr
)
self
.
conv2d_0
.
skip_quant
=
True
self
.
batch_norm_0
=
BatchNorm
(
6
)
self
.
relu_0
=
ReLU
()
self
.
pool2d_0
=
Pool2D
(
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
)
self
.
conv2d_1
=
Conv2D
(
in_channels
=
6
,
out_channels
=
16
,
kernel_size
=
5
,
stride
=
1
,
padding
=
0
,
weight_attr
=
conv2d_w2_attr
,
bias_attr
=
conv2d_b2_attr
)
self
.
conv2d_1
.
skip_quant
=
False
self
.
batch_norm_1
=
BatchNorm
(
16
)
self
.
relu6_0
=
ReLU6
()
self
.
pool2d_1
=
Pool2D
(
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
)
self
.
linear_0
=
Linear
(
in_features
=
400
,
out_features
=
120
,
weight_attr
=
fc_w1_attr
,
bias_attr
=
fc_b1_attr
)
self
.
linear_0
.
skip_quant
=
True
self
.
leaky_relu_0
=
LeakyReLU
()
self
.
linear_1
=
Linear
(
in_features
=
120
,
out_features
=
84
,
weight_attr
=
fc_w2_attr
,
bias_attr
=
fc_b2_attr
)
self
.
linear_1
.
skip_quant
=
False
self
.
sigmoid_0
=
Sigmoid
()
self
.
linear_2
=
Linear
(
in_features
=
84
,
out_features
=
num_classes
,
weight_attr
=
fc_w3_attr
,
bias_attr
=
fc_b3_attr
)
self
.
linear_2
.
skip_quant
=
False
self
.
softmax_0
=
Softmax
()
def
forward
(
self
,
inputs
):
x
=
self
.
conv2d_0
(
inputs
)
x
=
self
.
batch_norm_0
(
x
)
x
=
self
.
relu_0
(
x
)
x
=
self
.
pool2d_0
(
x
)
x
=
self
.
conv2d_1
(
x
)
x
=
self
.
batch_norm_1
(
x
)
x
=
self
.
relu6_0
(
x
)
x
=
self
.
pool2d_1
(
x
)
x
=
fluid
.
layers
.
flatten
(
x
,
1
)
x
=
self
.
linear_0
(
x
)
x
=
self
.
leaky_relu_0
(
x
)
x
=
self
.
linear_1
(
x
)
x
=
self
.
sigmoid_0
(
x
)
x
=
self
.
linear_2
(
x
)
x
=
self
.
softmax_0
(
x
)
return
x
class
TestImperativeOutSclae
(
unittest
.
TestCase
):
def
test_out_scale_acc
(
self
):
seed
=
1000
lr
=
0.1
imperative_out_scale
=
ImperativeQuantAware
()
np
.
random
.
seed
(
seed
)
reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
32
,
drop_last
=
True
)
lenet
=
ImperativeLenet
()
fixed_state
=
{}
for
name
,
param
in
lenet
.
named_parameters
():
p_shape
=
param
.
numpy
().
shape
p_value
=
param
.
numpy
()
if
name
.
endswith
(
"bias"
):
value
=
np
.
zeros_like
(
p_value
).
astype
(
'float32'
)
else
:
value
=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
0.01
,
size
=
np
.
product
(
p_shape
)).
reshape
(
p_shape
).
astype
(
'float32'
)
fixed_state
[
name
]
=
value
lenet
.
set_dict
(
fixed_state
)
imperative_out_scale
.
quantize
(
lenet
)
adam
=
AdamOptimizer
(
learning_rate
=
lr
,
parameter_list
=
lenet
.
parameters
())
dynamic_loss_rec
=
[]
lenet
.
train
()
for
batch_id
,
data
in
enumerate
(
reader
()):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
img
=
fluid
.
dygraph
.
to_variable
(
x_data
)
label
=
fluid
.
dygraph
.
to_variable
(
y_data
)
out
=
lenet
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
adam
.
minimize
(
avg_loss
)
lenet
.
clear_gradients
()
dynamic_loss_rec
.
append
(
avg_loss
.
numpy
()[
0
])
if
batch_id
%
100
==
0
:
_logger
.
info
(
'{}: {}'
.
format
(
'loss'
,
avg_loss
.
numpy
()))
lenet
.
eval
()
path
=
"./save_dynamic_quant_infer_model/lenet"
save_dir
=
"./save_dynamic_quant_infer_model"
imperative_out_scale
.
save_quantized_model
(
layer
=
lenet
,
path
=
path
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
])
paddle
.
enable_static
()
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
fluid
.
io
.
load_inference_model
(
dirname
=
save_dir
,
executor
=
exe
,
model_filename
=
"lenet"
+
INFER_MODEL_SUFFIX
,
params_filename
=
"lenet"
+
INFER_PARAMS_SUFFIX
))
model_ops
=
inference_program
.
global_block
().
ops
conv2d_count
,
mul_count
=
0
,
0
for
i
,
op
in
enumerate
(
model_ops
):
if
op
.
type
==
'conv2d'
:
if
conv2d_count
>
0
:
self
.
assertTrue
(
'fake_quantize_dequantize'
in
model_ops
[
i
-
1
].
type
)
else
:
self
.
assertTrue
(
'fake_quantize_dequantize'
not
in
model_ops
[
i
-
1
].
type
)
conv2d_count
+=
1
if
op
.
type
==
'mul'
:
if
mul_count
>
0
:
self
.
assertTrue
(
'fake_quantize_dequantize'
in
model_ops
[
i
-
1
].
type
)
else
:
self
.
assertTrue
(
'fake_quantize_dequantize'
not
in
model_ops
[
i
-
1
].
type
)
mul_count
+=
1
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/contrib/slim/tests/test_moving_average_abs_max_scale_op.py
浏览文件 @
63840227
...
...
@@ -73,7 +73,7 @@ class TestMovingAverageAbsMaxScaleOp(unittest.TestCase):
feed_dict
=
{
"image"
:
img
,
"label"
:
label
}
res
=
exe
.
run
(
binary
,
feed_dict
)
def
test_
fw_bw
(
self
):
def
test_
check_op_times
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_backward
(
use_cuda
=
True
)
self
.
check_backward
(
use_cuda
=
False
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录