qat.py 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn.quant.quant_layers as quant_layers
24
from paddle.fluid import dygraph, core, framework, unique_name
25
from paddle.fluid.framework import IrGraph
26
from paddle.fluid.executor import Executor, global_scope
27 28
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
29 30
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
31
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
32
from paddle.fluid.log_helper import get_logger
33
from .. import quantization_pass
C
cc 已提交
34
from . import utils
35

C
cc 已提交
36
__all__ = ['ImperativeQuantAware']
37 38 39 40 41 42 43

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
44
    Applying quantization aware training (QAT) to the dgraph model.
45 46
    """

47 48 49 50 51 52 53 54 55 56 57 58
    def __init__(
            self,
            quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
            weight_quantize_type='abs_max',
            activation_quantize_type='moving_average_abs_max',
            weight_bits=8,
            activation_bits=8,
            moving_rate=0.9,
            weight_preprocess_layer=None,
            act_preprocess_layer=None,
            weight_quantize_layer=None,
            act_quantize_layer=None):
C
cc 已提交
59
        """
60 61 62
        The constructor for ImperativeQuantAware.

        Args:
63 64
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
65
            weight_quantize_type(str): quantization type for weights,
66
                which supports 'abs_max' and 'channel_wise_abs_max'.
67 68
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
69 70 71 72 73
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
74 75
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
95 96 97
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
98 99 100 101 102
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
103 104 105
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
106 107 108
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
109

110
        Note:
C
cc 已提交
111 112 113 114
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
115 116

        Examples 1:
117 118
        .. code-block:: python

119
            import paddle
120 121
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
122
            from paddle.vision.models \
123 124 125 126 127 128 129 130 131 132
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
133
            # The outscale of outputs in supportted layers would be calculated.
134 135 136 137 138 139
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
140
            imperative_qat.save_quantized_model(
141 142 143 144 145
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
189 190
        """
        super(ImperativeQuantAware, self).__init__()
H
huangxu96 已提交
191

C
cc 已提交
192 193 194 195 196 197 198 199 200 201 202
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
203
        }
C
cc 已提交
204 205 206

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

X
XGZhang 已提交
207
        self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate)
208 209 210

    def quantize(self, model):
        """
C
cc 已提交
211 212 213 214 215
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
216 217

        Args:
218
            model(paddle.nn.Layer): the model to be quantized.
219 220
        Returns:
            None
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
256
        """
C
cc 已提交
257 258 259
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
        self._quantize_inputs.apply(model)
260
        self._quantize_outputs.apply(model)
C
cc 已提交
261 262

    def save_quantized_model(self, layer, path, input_spec=None, **config):
263 264
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
265 266 267 268 269 270 271 272


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

273 274 275 276 277 278 279 280 281 282 283 284
    def __init__(
            self,
            quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
            weight_quantize_type='abs_max',
            activation_quantize_type='moving_average_abs_max',
            weight_bits=8,
            activation_bits=8,
            moving_rate=0.9,
            weight_preprocess_layer=None,
            act_preprocess_layer=None,
            weight_quantize_layer=None,
            act_quantize_layer=None):
C
cc 已提交
285 286 287 288 289 290 291 292
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
293 294
            utils.layer_name_map[layer]
            if layer in utils.layer_name_map else layer
C
cc 已提交
295 296
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
297 298
            assert not isinstance(layer, str) \
                and layer in utils.fake_quant_input_layers, \
C
cc 已提交
299 300 301 302 303
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
304 305
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
306
            "Unsupported weight_quantize_type: %s. It can only " \
307 308 309
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
310
            "Unsupported activation_quantize_type: %s. It can " \
311
            "only be moving_average_abs_max now." \
C
cc 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
345 346 347 348 349 350 351 352 353 354 355 356
        """
        Quantize the weights and activations to calculate for specific 
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

C
cc 已提交
357 358 359
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

360 361 362 363
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
364 365
                continue

366 367 368 369 370
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
371

372
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
373
        quant_layer_name = None
374 375

        for key, value in utils.layer_name_map.items():
C
cc 已提交
376 377 378 379 380 381
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
382

383
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
384

385

386 387
class ImperativeQuantizeOutputs(object):
    """
388
    Calculate the output scales for target layers.
389 390
    """

391
    def __init__(self, moving_rate=0.9):
392
        """
393
        The constructor for ImperativeQuantizeOutputs.
394 395

        Args:
C
cc 已提交
396 397
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
398
        """
399
        super(ImperativeQuantizeOutputs, self).__init__()
400 401
        self._moving_rate = moving_rate

C
cc 已提交
402
    def apply(self, model):
403
        """
404 405
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
406 407

        Args:
408
            model(paddle.nn.Layer): The target model which would be
409
                calculate the output quantization scale.
410 411 412 413

        Returns:
            None
        """
C
cc 已提交
414 415
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
416

417
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
418 419
            if '_act_preprocess' in cur_name:
                continue
420
            if not self._is_target_layer(cur_layer):
421 422
                continue

423 424 425 426
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
427
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
428 429
                    cur_layer, self._moving_rate)
            else:
430 431
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
                    cur_layer, self._moving_rate)
432 433

            setattr(parent_layer, sub_name, cur_quant_layer)
434

435 436 437 438 439 440
    def save_quantized_model(self,
                             model,
                             path,
                             input_spec=None,
                             onnx_format=False,
                             **config):
441 442 443 444
        """
        Save the quantized model for the inference.

        Args:
445
            model (Layer): The model to be saved.
446 447 448 449 450 451 452
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
453 454
            onnx_format (bool, optional): Whether to export the quantized model 
                with format of ONNX. Default is False.
455 456 457 458
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
459
                The following options are currently supported:
460 461 462 463 464 465
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
466 467 468 469

        Returns:
            None
        """
470
        assert isinstance(model, dygraph.Layer), \
471 472
            "The model must be the instance of dygraph.Layer."

473
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
474 475

        is_dynamic_mode = False
476 477 478 479
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

480 481
        place = core.CPUPlace()
        scope = global_scope()
482 483 484
        exe = Executor(place)

        dirname = os.path.dirname(path)
485 486 487
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
488 489

        [infer_program, feed_target_names, fetch_targets] = (
490 491 492 493 494 495
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

496
        self._gather_scales(infer_program, scope, fetch_targets)
497

498 499 500 501 502 503 504 505 506
        # Remove `moving_average_abs_max_scale` node in sub graphs.
        graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
        for sub_graph in graph.all_sub_graphs():
            for _op in sub_graph.all_op_nodes():
                if _op.name() == "moving_average_abs_max_scale":
                    sub_graph.safe_remove_nodes(_op)
            sub_graph.resolve_hazard()
        infer_program = graph.to_program()

507
        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
508

509 510 511 512 513 514 515 516 517 518 519 520
        clip_extra = False
        if onnx_format:
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
            transform_pass = ReplaceFakeQuantDequantPass(scope, place)
            transform_pass.apply(graph)

            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
            infer_program = graph.to_program()

            clip_extra = True

521 522 523 524 525
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
526
            main_program=infer_program.clone(),
527
            model_filename=model_filename,
528
            params_filename=params_filename,
529
            clip_extra=clip_extra)
530

531 532 533
        if is_dynamic_mode:
            paddle.disable_static()

534
    def _is_target_layer(self, layer):
535
        """
536
        Whether the layer needs to calculate output scales.
537
        """
538 539
        flag = False
        if isinstance(layer, dygraph.Layer):
540
            # exclude fake_quant ops in quant_layers file
541 542 543
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
544

545 546
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
547 548 549 550

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

551
        return flag
C
cc 已提交
552

553
    def _gather_scales(self, program, scope, fetch_targets):
554
        """
555
        Get all scales from fake ops, save them into the corresponding ops
556
        and delete all moving_average_abs_max_scale ops.
557
        """
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)
582
                        op._set_attr("with_quant_attr", True)
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
603 604 605 606 607 608
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
                            argname + str(index) + "_threshold", out_scale)
                        previous_op._set_attr("out_threshold", out_scale)
609
                        previous_op._set_attr("with_quant_attr", True)
610 611 612

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
613 614 615 616 617
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
618 619 620

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
621

622
    def _set_skip_quant_attr(self, program):
623
        """
624
        Label the skip quantized ops.
625
        """
626 627 628 629
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
630
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
631 632 633 634 635 636 637

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
638 639 640
        target_op_types = [
            "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose"
        ]
G
guofei 已提交
641 642 643
        if in_op.type not in target_op_types:
            return False

644
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
645
            for arg_name in in_op.input_arg_names]
646
        return any(op is not None and op.type not in \
647
            utils.fake_quantize_dequantize_op_types for op in previous_ops)