qat.py 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.quant.quant_layers as quant_layers
25
from paddle.fluid import dygraph, core, framework, unique_name
26
from paddle.fluid.framework import IrGraph
27
from paddle.fluid.executor import Executor, global_scope
28 29
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
30 31
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
32
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
33
from paddle.fluid.log_helper import get_logger
34
from .. import quantization_pass
C
cc 已提交
35
from . import utils
36
from . import fuse_utils
37

C
cc 已提交
38
__all__ = ['ImperativeQuantAware']
39

40 41 42
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
43 44


45 46 47 48 49 50 51 52 53 54 55
def lazy_import_fleet(layer_name_map, fake_quant_input_layers):
    from paddle.distributed import fleet
    layer_name_map[
        'ColumnParallelLinear'] = fleet.meta_parallel.parallel_layers.mp_layers.ColumnParallelLinear
    layer_name_map[
        'RowParallelLinear'] = fleet.meta_parallel.parallel_layers.mp_layers.RowParallelLinear
    fake_quant_input_layers.append(fleet.meta_parallel.RowParallelLinear)
    fake_quant_input_layers.append(fleet.meta_parallel.ColumnParallelLinear)
    return layer_name_map, fake_quant_input_layers


56 57
class ImperativeQuantAware(object):
    """
58
    Applying quantization aware training (QAT) to the dgraph model.
59 60
    """

61
    def __init__(self,
62 63 64 65
                 quantizable_layer_type=[
                     'Conv2D', 'Linear', 'Conv2DTranspose',
                     'ColumnParallelLinear', 'RowParallelLinear'
                 ],
66 67 68 69 70 71 72 73 74 75
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 fuse_conv_bn=False,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
76
        """
77 78 79
        The constructor for ImperativeQuantAware.

        Args:
80 81
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
82
            weight_quantize_type(str): quantization type for weights,
83
                which supports 'abs_max' and 'channel_wise_abs_max'.
84 85
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
86 87 88 89 90
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
91 92
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
93 94 95
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
96
            fuse_conv_bn(bool): Whether to fuse conv and bn, default is False.
C
cc 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
113 114 115
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
116 117 118 119 120
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
121 122 123
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
124
                activation and returns dequantized activation.
C
cc 已提交
125 126
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
127

128
        Note:
C
cc 已提交
129 130 131 132
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
133 134

        Examples 1:
135 136
        .. code-block:: python

137
            import paddle
138 139
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
140
            from paddle.vision.models \
141
                import resnet
142

143 144 145 146 147
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
148

149 150
            # Add the fake quant logical.
            # The original model will be rewrite.
151
            # The outscale of outputs in supportted layers would be calculated.
152 153 154 155
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
156

157
            # Save quant model for the inference.
158
            imperative_qat.save_quantized_model(
159 160 161 162 163
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
207 208
        """
        super(ImperativeQuantAware, self).__init__()
209
        self.fuse_conv_bn = fuse_conv_bn
H
huangxu96 已提交
210

C
cc 已提交
211 212 213 214 215 216 217 218 219 220 221
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
222
        }
C
cc 已提交
223 224 225

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

X
XGZhang 已提交
226
        self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate)
227 228 229

    def quantize(self, model):
        """
C
cc 已提交
230 231 232 233 234
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
235 236

        Args:
237
            model(paddle.nn.Layer): the model to be quantized.
238 239
        Returns:
            None
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
275
        """
C
cc 已提交
276 277
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
278 279 280 281

        if self.fuse_conv_bn:
            fuse_utils.fuse_conv_bn(model)

C
cc 已提交
282
        self._quantize_inputs.apply(model)
283
        self._quantize_outputs.apply(model)
284
        return model
C
cc 已提交
285 286

    def save_quantized_model(self, layer, path, input_spec=None, **config):
287 288
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
289 290 291 292 293 294 295 296


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

297 298 299 300 301 302 303 304 305 306 307
    def __init__(self,
                 quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
                 weight_quantize_type='abs_max',
                 activation_quantize_type='moving_average_abs_max',
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_preprocess_layer=None,
                 act_preprocess_layer=None,
                 weight_quantize_layer=None,
                 act_quantize_layer=None):
C
cc 已提交
308
        """
309
        The constructor for ImperativeQuantizeInputs.
C
cc 已提交
310 311 312 313

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()
314 315
        self.layer_name_map, self.fake_quant_input_layers = lazy_import_fleet(
            utils.layer_name_map, utils.fake_quant_input_layers)
C
cc 已提交
316 317

        self._quantizable_layer_type = tuple(
318 319
            self.layer_name_map[layer] if layer in
            self.layer_name_map else layer for layer in quantizable_layer_type)
C
cc 已提交
320
        for layer in self._quantizable_layer_type:
321
            assert not isinstance(layer, str) \
322
                and layer in self.fake_quant_input_layers, \
C
cc 已提交
323 324 325 326 327
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
328 329
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
330
            "Unsupported weight_quantize_type: %s. It can only " \
331 332 333
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
334
            "Unsupported activation_quantize_type: %s. It can " \
335
            "only be moving_average_abs_max now." \
C
cc 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
369
        """
370
        Quantize the weights and activations to calculate for specific
371 372 373 374 375 376 377 378 379 380
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

C
cc 已提交
381 382 383
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

384 385 386 387
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
388 389
                continue

390 391 392 393 394
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
395

396
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
397
        quant_layer_name = None
398

399
        for key, value in self.layer_name_map.items():
C
cc 已提交
400 401 402 403 404 405
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
406

407
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
408

409

410 411
class ImperativeQuantizeOutputs(object):
    """
412
    Calculate the output scales for target layers.
413 414
    """

415
    def __init__(self, moving_rate=0.9):
416
        """
417
        The constructor for ImperativeQuantizeOutputs.
418 419

        Args:
C
cc 已提交
420 421
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
422
        """
423
        super(ImperativeQuantizeOutputs, self).__init__()
424 425
        self._moving_rate = moving_rate

C
cc 已提交
426
    def apply(self, model):
427
        """
428 429
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
430 431

        Args:
432
            model(paddle.nn.Layer): The target model which would be
433
                calculate the output quantization scale.
434 435 436 437

        Returns:
            None
        """
C
cc 已提交
438 439
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
440

441
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
442 443
            if '_act_preprocess' in cur_name:
                continue
444
            if not self._is_target_layer(cur_layer):
445 446
                continue

447 448 449
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

450 451
            reduce_type = None

452
            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
453
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
454
                    cur_layer, self._moving_rate, reduce_type=reduce_type)
455
            else:
456
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
457
                    cur_layer, self._moving_rate, reduce_type=reduce_type)
458 459

            setattr(parent_layer, sub_name, cur_quant_layer)
460

461 462 463 464 465 466
    def save_quantized_model(self,
                             model,
                             path,
                             input_spec=None,
                             onnx_format=False,
                             **config):
467 468 469 470
        """
        Save the quantized model for the inference.

        Args:
471
            model (Layer): The model to be saved.
472
            path (str): The path prefix to save model. The format is
473 474 475
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
476
                InputSpec or example Tensor. If None, all input variables of
477 478
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
479
            onnx_format (bool, optional): Whether to export the quantized model
480
                with format of ONNX. Default is False.
481 482 483 484
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
485
                The following options are currently supported:
486 487 488
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
489
                If the provided ``output_spec`` list is not all output variables,
490
                the saved model will be pruned according to the given
491
                ``output_spec`` list.
492 493 494 495

        Returns:
            None
        """
496
        assert isinstance(model, dygraph.Layer), \
497 498
            "The model must be the instance of dygraph.Layer."

499
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
500 501

        is_dynamic_mode = False
502 503 504 505
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

506 507
        place = core.CPUPlace()
        scope = global_scope()
508 509 510
        exe = Executor(place)

        dirname = os.path.dirname(path)
511 512 513
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
514

515 516 517 518 519
        [infer_program, feed_target_names, fetch_targets
         ] = (load_inference_model(dirname=dirname,
                                   executor=exe,
                                   model_filename=model_filename,
                                   params_filename=params_filename))
520

521
        self._gather_scales(infer_program, scope, fetch_targets)
522

523 524 525 526 527 528 529 530 531
        # Remove `moving_average_abs_max_scale` node in sub graphs.
        graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
        for sub_graph in graph.all_sub_graphs():
            for _op in sub_graph.all_op_nodes():
                if _op.name() == "moving_average_abs_max_scale":
                    sub_graph.safe_remove_nodes(_op)
            sub_graph.resolve_hazard()
        infer_program = graph.to_program()

532
        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
533

534 535 536 537 538 539 540 541 542 543 544 545
        clip_extra = False
        if onnx_format:
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
            transform_pass = ReplaceFakeQuantDequantPass(scope, place)
            transform_pass.apply(graph)

            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
            infer_program = graph.to_program()

            clip_extra = True

546 547 548 549 550 551 552 553
        save_inference_model(dirname=dirname,
                             feeded_var_names=feed_target_names,
                             target_vars=fetch_targets,
                             executor=exe,
                             main_program=infer_program.clone(),
                             model_filename=model_filename,
                             params_filename=params_filename,
                             clip_extra=clip_extra)
554

555 556 557
        if is_dynamic_mode:
            paddle.disable_static()

558
    def _is_target_layer(self, layer):
559
        """
560
        Whether the layer needs to calculate output scales.
561
        """
562 563
        flag = False
        if isinstance(layer, dygraph.Layer):
564
            # exclude fake_quant ops in quant_layers file
565 566 567
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
568

569 570
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
571 572 573 574

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

575
        return flag
C
cc 已提交
576

577
    def _gather_scales(self, program, scope, fetch_targets):
578
        """
579
        Get all scales from fake ops, save them into the corresponding ops
580
        and delete all moving_average_abs_max_scale ops.
581
        """
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)
606
                        op._set_attr("with_quant_attr", True)
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
627 628 629 630 631 632
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
                            argname + str(index) + "_threshold", out_scale)
                        previous_op._set_attr("out_threshold", out_scale)
633
                        previous_op._set_attr("with_quant_attr", True)
634 635 636

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
637 638 639 640 641
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
642 643 644

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
645

646
    def _set_skip_quant_attr(self, program):
647
        """
648
        Label the skip quantized ops.
649
        """
650 651 652 653
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
654
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
655 656 657 658 659 660 661

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
662 663 664
        target_op_types = [
            "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose"
        ]
G
guofei 已提交
665 666 667
        if in_op.type not in target_op_types:
            return False

668
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
669
            for arg_name in in_op.input_arg_names]
670
        return any(op is not None and op.type not in \
671
            utils.fake_quantize_dequantize_op_types for op in previous_ops)