qat.py 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn.quant.quant_layers as quant_layers
24
from paddle.fluid import dygraph, core, framework, unique_name
25
from paddle.fluid.executor import Executor, global_scope
26 27
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
28 29
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
30
from paddle.fluid.log_helper import get_logger
31
from .. import quantization_pass
C
cc 已提交
32
from . import utils
33

C
cc 已提交
34
__all__ = ['ImperativeQuantAware']
35 36 37 38 39 40 41

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


class ImperativeQuantAware(object):
    """
42
    Applying quantization aware training (QAT) to the dgraph model.
43 44
    """

45 46 47 48 49 50 51 52 53 54 55 56
    def __init__(
            self,
            quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
            weight_quantize_type='abs_max',
            activation_quantize_type='moving_average_abs_max',
            weight_bits=8,
            activation_bits=8,
            moving_rate=0.9,
            weight_preprocess_layer=None,
            act_preprocess_layer=None,
            weight_quantize_layer=None,
            act_quantize_layer=None):
C
cc 已提交
57
        """
58 59 60
        The constructor for ImperativeQuantAware.

        Args:
61 62
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
63
            weight_quantize_type(str): quantization type for weights,
64
                which supports 'abs_max' and 'channel_wise_abs_max'.
65 66
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
67 68 69 70 71
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
72 73
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
93 94 95
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
96 97 98 99 100
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
101 102 103
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
104 105 106
                activation and returns dequantized activation. 
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
107

108
        Note:
C
cc 已提交
109 110 111 112
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
113 114

        Examples 1:
115 116
        .. code-block:: python

117
            import paddle
118 119
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
120
            from paddle.vision.models \
121 122 123 124 125 126 127 128 129 130
                import resnet
            
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
            
            # Add the fake quant logical.
            # The original model will be rewrite.
131
            # The outscale of outputs in supportted layers would be calculated.
132 133 134 135 136 137
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
            
            # Save quant model for the inference.
138
            imperative_qat.save_quantized_model(
139 140 141 142 143
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
187 188
        """
        super(ImperativeQuantAware, self).__init__()
H
huangxu96 已提交
189

C
cc 已提交
190 191 192 193 194 195 196 197 198 199 200
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
            "act_quantize_layer": act_quantize_layer
201
        }
C
cc 已提交
202 203 204

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

X
XGZhang 已提交
205
        self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate)
206 207 208

    def quantize(self, model):
        """
C
cc 已提交
209 210 211 212 213
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
214 215

        Args:
216
            model(paddle.nn.Layer): the model to be quantized.
217 218
        Returns:
            None
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
                    super(ImperativeModel, self).__init__()
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
254
        """
C
cc 已提交
255 256 257
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
        self._quantize_inputs.apply(model)
258
        self._quantize_outputs.apply(model)
C
cc 已提交
259 260

    def save_quantized_model(self, layer, path, input_spec=None, **config):
261 262
        self._quantize_outputs.save_quantized_model(layer, path, input_spec,
                                                    **config)
C
cc 已提交
263 264 265 266 267 268 269 270


class ImperativeQuantizeInputs(object):
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

271 272 273 274 275 276 277 278 279 280 281 282
    def __init__(
            self,
            quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
            weight_quantize_type='abs_max',
            activation_quantize_type='moving_average_abs_max',
            weight_bits=8,
            activation_bits=8,
            moving_rate=0.9,
            weight_preprocess_layer=None,
            act_preprocess_layer=None,
            weight_quantize_layer=None,
            act_quantize_layer=None):
C
cc 已提交
283 284 285 286 287 288 289 290
        """
        The constructor for ImperativeQuantizeInputs. 

        Please refer to the args of ImperativeQuantAware.
        """
        super(ImperativeQuantizeInputs, self).__init__()

        self._quantizable_layer_type = tuple(
291 292
            utils.layer_name_map[layer]
            if layer in utils.layer_name_map else layer
C
cc 已提交
293 294
            for layer in quantizable_layer_type)
        for layer in self._quantizable_layer_type:
295 296
            assert not isinstance(layer, str) \
                and layer in utils.fake_quant_input_layers, \
C
cc 已提交
297 298 299 300 301
                "%s is unspported to be quantized." % layer

        quantize_type = {
            'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
        }
302 303
        assert weight_quantize_type != 'moving_average_abs_max' \
            and weight_quantize_type in quantize_type, \
C
cc 已提交
304
            "Unsupported weight_quantize_type: %s. It can only " \
305 306 307
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
        # TODO (jc): activation_quantize_type supports range_abs_max
        assert activation_quantize_type == 'moving_average_abs_max', \
C
cc 已提交
308
            "Unsupported activation_quantize_type: %s. It can " \
309
            "only be moving_average_abs_max now." \
C
cc 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
            % activation_quantize_type

        bits_check = lambda bits: isinstance(bits, int) \
            and bits >= 0 and bits <= 16
        assert bits_check(weight_bits), \
            "weight_bits should be 1, 2,... or 16."
        assert bits_check(activation_bits), \
            "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or \
            issubclass(method, dygraph.layers.Layer)
        assert layer_check(weight_preprocess_layer), \
            "weight_preprocess should be nn.Layer."
        assert layer_check(act_preprocess_layer), \
            "act_preprocess should be nn.Layer."
        assert layer_check(weight_quantize_layer), \
            "weight_quantize should be nn.Layer."
        assert layer_check(act_quantize_layer), \
            "act_quantize should be nn.Layer."

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
            "act_quant_layer": act_quantize_layer
        }

    def apply(self, model):
343 344 345 346 347 348 349 350 351 352 353 354
        """
        Quantize the weights and activations to calculate for specific 
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

C
cc 已提交
355 356 357
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."

358 359 360 361
        for name, cur_layer in model.named_sublayers():
            if not isinstance(cur_layer, self._quantizable_layer_type) \
                or (hasattr(cur_layer, "skip_quant") \
                    and cur_layer.skip_quant == True):
362 363
                continue

364 365 366 367 368
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, name)

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
369

370
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
371
        quant_layer_name = None
372 373

        for key, value in utils.layer_name_map.items():
C
cc 已提交
374 375 376 377 378 379
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
        assert quant_layer_name is not None, \
            "The layer %s is unsupported to be quantized." \
            % layer.full_name()
380

381
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
382

383

384 385
class ImperativeQuantizeOutputs(object):
    """
386
    Calculate the output scales for target layers.
387 388
    """

389
    def __init__(self, moving_rate=0.9):
390
        """
391
        The constructor for ImperativeQuantizeOutputs.
392 393

        Args:
C
cc 已提交
394 395
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
396
        """
397
        super(ImperativeQuantizeOutputs, self).__init__()
398 399
        self._moving_rate = moving_rate

C
cc 已提交
400
    def apply(self, model):
401
        """
402 403
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
404 405

        Args:
406
            model(paddle.nn.Layer): The target model which would be
407
                calculate the output quantization scale.
408 409 410 411

        Returns:
            None
        """
C
cc 已提交
412 413
        assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of dygraph.Layer."
414

415
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
416 417
            if '_act_preprocess' in cur_name:
                continue
418
            if not self._is_target_layer(cur_layer):
419 420
                continue

421 422 423 424
            parent_layer, sub_name = \
                utils.find_parent_layer_and_sub_name(model, cur_name)

            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
425
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
426 427
                    cur_layer, self._moving_rate)
            else:
428 429
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
                    cur_layer, self._moving_rate)
430 431

            setattr(parent_layer, sub_name, cur_quant_layer)
432

433
    def save_quantized_model(self, model, path, input_spec=None, **config):
434 435 436 437
        """
        Save the quantized model for the inference.

        Args:
438
            model (Layer): The model to be saved.
439 440 441 442 443 444 445 446 447 448 449
            path (str): The path prefix to save model. The format is 
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
                InputSpec or example Tensor. If None, all input variables of 
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
            **configs (dict, optional): Other save configuration options for
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
450
                The following options are currently supported:
451 452 453 454 455 456
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
                If the provided ``output_spec`` list is not all output variables, 
                the saved model will be pruned according to the given
                ``output_spec`` list. 
457 458 459 460

        Returns:
            None
        """
461
        assert isinstance(model, dygraph.Layer), \
462 463
            "The model must be the instance of dygraph.Layer."

464
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
465 466

        is_dynamic_mode = False
467 468 469 470
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

471 472
        place = core.CPUPlace()
        scope = global_scope()
473 474 475
        exe = Executor(place)

        dirname = os.path.dirname(path)
476 477 478
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
479 480

        [infer_program, feed_target_names, fetch_targets] = (
481 482 483 484 485 486
            load_inference_model(
                dirname=dirname,
                executor=exe,
                model_filename=model_filename,
                params_filename=params_filename))

487
        self._gather_scales(infer_program, scope, fetch_targets)
488 489

        self._set_skip_quant_attr(infer_program)
G
guofei 已提交
490

491 492 493 494 495
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
496
            main_program=infer_program.clone(),
497
            model_filename=model_filename,
498 499
            params_filename=params_filename,
            clip_extra=True)
500

501 502 503
        if is_dynamic_mode:
            paddle.disable_static()

504
    def _is_target_layer(self, layer):
505
        """
506
        Whether the layer needs to calculate output scales.
507
        """
508 509
        flag = False
        if isinstance(layer, dygraph.Layer):
510
            # exclude fake_quant ops in quant_layers file
511 512 513
            if utils.is_leaf_layer(layer) and \
                not isinstance(layer, tuple(utils.fake_quant_leaf_layers)):
                flag = True
514

515 516
            if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
                flag = True
517 518 519 520

            if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
                flag = True

521
        return flag
C
cc 已提交
522

523
    def _gather_scales(self, program, scope, fetch_targets):
524
        """
525
        Get all scales from fake ops, save them into the corresponding ops
526
        and delete all moving_average_abs_max_scale ops.
527
        """
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

        def _gather_input_scale():
            target_ops = []
            skip_ops = utils.fake_quantize_dequantize_op_types + \
                ["moving_average_abs_max_scale"]
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

                    if previous_op is not None and \
                        ("quantize_dequantize" in previous_op.type or \
                        previous_op.type == "moving_average_abs_max_scale"):
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
                            op, in_var_name)
                        op._set_attr(argname + str(index) + "_threshold",
                                     in_scale)
552
                        op._set_attr("with_quant_attr", True)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
573 574 575 576 577 578
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
                            argname + str(index) + "_threshold", out_scale)
                        previous_op._set_attr("out_threshold", out_scale)
579
                        previous_op._set_attr("with_quant_attr", True)
580 581 582

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
583 584 585 586 587
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
588 589 590

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
591

592
    def _set_skip_quant_attr(self, program):
593
        """
594
        Label the skip quantized ops.
595
        """
596 597 598 599
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
600
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
601 602 603 604 605 606 607

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
608 609 610
        target_op_types = [
            "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose"
        ]
G
guofei 已提交
611 612 613
        if in_op.type not in target_op_types:
            return False

614
        previous_ops = [utils.find_previous_op(block, arg_name) \
G
guofei 已提交
615
            for arg_name in in_op.input_arg_names]
616
        return any(op is not None and op.type not in \
617
            utils.fake_quantize_dequantize_op_types for op in previous_ops)