operator.cc 108.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
31
#include "paddle/fluid/platform/enforce.h"
32
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
33
#include "paddle/fluid/platform/profiler/event_tracing.h"
34
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
35
#include "paddle/phi/common/int_array.h"
36
#include "paddle/phi/common/scalar.h"
37
#include "paddle/phi/core/kernel_context.h"
38 39
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
40

41
namespace phi {
42
class DenseTensor;
43
}  // namespace phi
44

45
#ifdef PADDLE_WITH_XPU
46 47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
48
#endif
Q
Qiao Longfei 已提交
49

50 51 52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
54 55 56 57
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
58
DECLARE_bool(benchmark);
59
DECLARE_bool(check_nan_inf);
60
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
61
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
62
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
63

Q
Qiao Longfei 已提交
64 65 66
namespace paddle {
namespace framework {

67 68 69 70 71 72
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
73

74 75
static DDim GetDimsDebug(const ScopeBase& scope,
                         const std::string& name,
76
                         bool get_actual_dim = false) {
77
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
78 79
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
80 81
  }

M
minqiyang 已提交
82 83 84
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
85
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
86
    if (get_actual_dim) {
87
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
88
    } else {
89
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
90
    }
S
Steffy-zxf 已提交
91 92
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
93 94 95 96 97
  } else {
    return DDim({-1});
  }
}

98
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
99 100 101 102 103
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

104
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
105 106 107 108
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
109

M
minqiyang 已提交
110 111 112
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
113 114
      return "";
    }
115
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
116 117
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
118 119 120
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
121
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
122
    }
S
Steffy-zxf 已提交
123 124
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
125 126 127 128 129
  } else {
    return "";
  }
}

130
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
147 148
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
149 150 151 152 153 154 155 156 157 158
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

159
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
160 161 162 163 164
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

165 166
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
167 168 169 170 171
  }

  return -1;
}

172
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
173 174 175 176 177 178 179
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
180 181 182
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
183 184 185 186 187
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
188 189 190 191 192
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
193
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
194 195 196 197 198 199
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
200
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
201 202 203 204 205 206
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

207
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
208 209 210
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
211
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
212 213 214 215
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
216
#else
217
      auto dev_id = place.device;
P
peizhilin 已提交
218
      platform::SetDeviceId(dev_id);
219 220 221
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
222 223 224 225
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
226
#else
227
      auto dev_id = place.device;
228
      platform::SetXPUDeviceId(dev_id);
229 230 231 232 233 234 235 236
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
237
      auto dev_id = place.device;
238
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
239 240 241 242 243 244 245 246
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
247
      auto dev_id = place.device;
F
fwenguang 已提交
248
      platform::SetMLUDeviceId(dev_id);
249 250 251 252 253 254 255 256
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
257
      phi::DeviceManager::SetDevice(place);
258
#endif
P
peizhilin 已提交
259
    }
P
peizhilin 已提交
260

261
    {
262 263 264
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
265
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
266
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
267 268
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
269 270
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
271
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
272
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
273 274
      RunImpl(scope, place);
    }
275

Z
Zhang Ting 已提交
276
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
277
  } catch (platform::EnforceNotMet& exception) {
278
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
279
    throw std::move(exception);
280 281 282 283 284 285
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
286
  } catch (...) {
287
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
288
    std::rethrow_exception(std::current_exception());
289
  }
290 291
}

292
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
293
  return inputs_.find(name) != inputs_.end();
294 295
}

296
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
297
  auto& ins = Inputs(name);
298
  PADDLE_ENFORCE_LE(
299 300
      ins.size(),
      1UL,
301
      platform::errors::InvalidArgument(
302 303
          "Operator %s's input %s should contain only one variable.",
          type_,
304
          name));
Y
Yu Yang 已提交
305
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
306 307
}

Y
Yu Yang 已提交
308 309
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
310
  auto it = inputs_.find(name);
311
  PADDLE_ENFORCE_NE(
312 313 314 315
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
316
  return it->second;
Y
Yan Chunwei 已提交
317 318
}

319
bool OperatorBase::HasOutputs(const std::string& name) const {
320
  if (outputs_.find(name) != outputs_.end()) {
321 322 323 324 325 326
    return true;
  } else {
    return false;
  }
}

327
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
328
  auto& outs = Outputs(name);
329
  PADDLE_ENFORCE_LE(
330 331
      outs.size(),
      1UL,
332
      platform::errors::InvalidArgument(
333 334
          "Operator %s's output %s should contain only one variable.",
          type_,
335
          name));
Y
Yu Yang 已提交
336
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
337 338
}

Y
Yu Yang 已提交
339 340
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
341
  auto it = outputs_.find(name);
342
  PADDLE_ENFORCE_NE(
343 344
      it,
      outputs_.end(),
345 346
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
347
  return it->second;
Y
Yan Chunwei 已提交
348 349
}

350
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
351
  std::stringstream ss;
Y
Yu Yang 已提交
352
  ss << "Op(" << type_ << "), inputs:{";
353

354
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
355 356
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
357 358
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
359 360
  }

Y
Yu Yang 已提交
361 362
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
363 364
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
365 366
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
367 368
      auto var_name = input.second[i];
      ss << var_name;
369
      if (scope) {
Q
Qiao Longfei 已提交
370 371 372 373 374 375 376
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
377 378 379
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
380
          ss << ":" << dtype;
381 382
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
383
          ss << "(" << GetPlace(*scope, var_name) << ")";
384
        }
385
      }
Y
Yu Yang 已提交
386 387 388
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
389
    }
Y
Yu Yang 已提交
390
    ss << "]";
Y
Yu Yang 已提交
391 392
    ++it;
    if (it != inputs_.end()) {
393 394
      ss << ", ";
    }
Q
Qiao Longfei 已提交
395
  }
Y
Yu Yang 已提交
396
  ss << "}, outputs:{";
Y
Yu Yang 已提交
397 398
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
399 400
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
401 402
      auto var_name = output.second[i];
      ss << var_name;
403
      if (scope) {
Q
Qiao Longfei 已提交
404 405 406 407 408 409 410
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
411 412
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
413 414
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
415
          ss << "(" << GetPlace(*scope, var_name) << ")";
416
        }
417
      }
Y
Yu Yang 已提交
418 419 420
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
421
    }
Y
Yu Yang 已提交
422
    ss << "]";
Y
Yu Yang 已提交
423 424
    ++it;
    if (it != outputs_.end()) {
425 426
      ss << ", ";
    }
Q
Qiao Longfei 已提交
427
  }
Y
Yu Yang 已提交
428
  ss << "}.";
Q
Qiao Longfei 已提交
429 430 431
  return ss.str();
}

Y
Yu Yang 已提交
432
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
433 434
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
435
                           const AttributeMap& attrs)
S
sneaxiy 已提交
436 437 438 439 440 441
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
442 443 444 445 446 447 448 449
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
450
}
451

Q
qijun 已提交
452 453
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
454
  for (auto& o : inputs_) {
Q
qijun 已提交
455 456 457 458 459 460
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
461 462 463 464 465 466 467 468 469 470
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
471
  auto& info = Info();
Y
Yu Yang 已提交
472 473

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
474
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
475 476 477 478 479 480 481 482 483
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
484 485
}

486
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
487
  if (info_ == nullptr || info_->proto_ == nullptr) return;
488

S
sneaxiy 已提交
489
  for (auto& in : info_->Proto().inputs()) {
490
    if (!in.dispensable() && !in.extra()) {
491
      PADDLE_ENFORCE_NE(
492 493 494 495
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
496
    }
497 498
  }

S
sneaxiy 已提交
499
  for (auto& out : info_->Proto().outputs()) {
500
    if (!out.dispensable() && !out.extra()) {
501
      PADDLE_ENFORCE_NE(
502 503 504 505
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
506
    }
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
522

C
chengduo 已提交
523
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
524 525
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
526 527
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
528
  } else {
529 530 531
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
532 533 534
  }
}

C
chengduo 已提交
535
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
536
  if (var->IsType<LoDTensor>()) {
537
    return var->GetMutable<LoDTensor>();
538 539
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
540
  } else {
541 542 543
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
544 545 546
  }
}

547
bool ExecutionContext::HasInput(const std::string& name) const {
548
  auto* var = InputVar(name);
549 550 551
  return var != nullptr;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

566
bool ExecutionContext::HasOutput(const std::string& name) const {
567
  auto* var = OutputVar(name);
568 569 570
  return var != nullptr;
}

X
Xin Pan 已提交
571
const Variable* ExecutionContext::InputVar(const std::string& name) const {
572 573
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
574 575 576
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

577
  PADDLE_ENFORCE_LE(
578 579
      it->second.size(),
      1UL,
580
      platform::errors::InvalidArgument(
581
          "Operator %s's input %s should contain only one variable.",
582 583
          op_.Type(),
          name));
X
Xin Pan 已提交
584 585 586
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
587
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
588 589 590
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

591
  PADDLE_ENFORCE_LE(
592 593
      it->second.size(),
      1UL,
594 595
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
596 597
          op_.Type(),
          name));
X
Xin Pan 已提交
598 599 600
  return it->second.empty() ? nullptr : it->second[0];
}

601
template <>
602
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
603
    const std::string& name) const {
604 605
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
606 607
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
608 609 610 611
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
612 613 614
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
H
hong 已提交
615
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
616
                   if (var == nullptr) return nullptr;
617 618
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(),
                                     true,
619 620 621 622
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
623 624 625 626 627
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

628
template <>
629
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
630
    const std::string& name) const {
H
hong 已提交
631 632 633
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
634 635
    return {};
  }
636
  std::vector<Tensor*> res;
637
  res.reserve(vars.size());
638 639 640
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
641 642 643
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
644
                 });
645 646 647
  return res;
}

Y
Yu Yang 已提交
648
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
649
  // check in new Function kernel first
650
  bool has_phi_kernel = false;
651
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
652
  auto kernel_key_map =
653
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
654
  for (auto& kernel : kernel_key_map) {
655
    has_phi_kernel = true;
656
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
657 658 659 660
      return true;
    }
  }

Y
Yu Yang 已提交
661 662
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
663 664 665 666 667 668 669 670 671 672 673 674 675
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
676 677 678
      return true;
    }
  }
H
hong 已提交
679

Y
Yu Yang 已提交
680 681 682
  return false;
}

683 684
class RuntimeInferShapeContext : public InferShapeContext {
 public:
685
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
686
      : op_(op), ctx_(ctx) {}
687 688

  bool HasInput(const std::string& name) const override {
689
    // has only one input
X
Xin Pan 已提交
690
    const auto& ins = ctx_.inputs;
691 692
    auto it = ins.find(name);
    if (it == ins.end()) {
693 694
      return false;
    }
695
    const auto& in = it->second;
X
Xin Pan 已提交
696
    if (in.size() == 0) return false;
697
    PADDLE_ENFORCE_EQ(
698 699
        in.size(),
        1UL,
700 701
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
702
    return in[0] != nullptr;
703 704 705
  }

  bool HasOutput(const std::string& name) const override {
706
    // has only one output
X
Xin Pan 已提交
707
    const auto& outs = ctx_.outputs;
708 709
    auto it = outs.find(name);
    if (it == outs.end()) {
710 711
      return false;
    }
712
    const auto& out = it->second;
X
Xin Pan 已提交
713
    if (out.size() == 0) {
714 715
      return false;
    }
716
    PADDLE_ENFORCE_EQ(
717 718
        out.size(),
        1UL,
719 720
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
721
    return out[0] != nullptr;
722 723
  }

724 725 726 727
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

728
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
729 730
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
731
    if (it == ins.end() || it->second.empty()) {
732 733
      return false;
    }
X
Xin Pan 已提交
734 735
    for (auto& input : it->second) {
      if (input == nullptr) {
736 737 738 739 740 741
        return false;
      }
    }
    return true;
  }

742 743
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
744 745
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
746
    if (it == outs.end() || it->second.empty()) {
747 748
      return false;
    }
749 750 751 752 753 754 755 756
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
757
      }
758
      return true;
759 760 761 762 763
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
764
  std::vector<std::string> Inputs(const std::string& name) const override {
765 766 767
    return op_.Inputs(name);
  }

H
hong 已提交
768
  std::vector<std::string> Outputs(const std::string& name) const override {
769 770 771
    return op_.Outputs(name);
  }

772 773 774
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
775 776
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
777 778 779
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
780 781 782
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
783 784 785 786 787 788 789
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
790 791
        idx,
        op_proto->outputs().size(),
792 793 794
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
795 796 797
            op_.Type(),
            idx,
            op_proto->outputs().size()));
798 799 800
    return op_proto->outputs()[idx].name();
  }

801 802 803
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
804
                size_t j = 0) override {
X
Xin Pan 已提交
805 806
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
807
    PADDLE_ENFORCE_NE(
808 809
        in_it,
        ctx_.inputs.end(),
810 811
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
812 813
        out_it,
        ctx_.outputs.end(),
814
        platform::errors::NotFound("Output %s does not exist.", out));
815 816
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
817 818 819
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
820 821 822 823
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
824 825 826
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
827 828
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
829 830 831

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
832

833
    PADDLE_ENFORCE_EQ(
834 835
        in_var->Type(),
        out_var->Type(),
836
        platform::errors::InvalidArgument(
837 838
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
839
            out));
840

841 842 843
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
844 845 846 847 848 849 850 851
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
852
      PADDLE_THROW(platform::errors::Unimplemented(
853
          "Currently, the input type of ShareDim only can be LoDTensor "
854
          "or SelectedRows."));
855 856 857
    }
  }

H
hong 已提交
858 859 860 861
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
862 863
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
864 865 866
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
867 868 869 870
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
871 872 873 874 875

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
876 877
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
878
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
879
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
880 881 882 883 884 885 886 887 888 889 890 891
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
892 893
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(),
                        true,
H
hong 已提交
894 895
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
896 897
                            i,
                            out_var_names[i]));
H
hong 已提交
898 899 900 901 902 903 904 905 906 907
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

908 909 910
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
911
                size_t j = 0) const override {
X
Xin Pan 已提交
912 913
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
914
    PADDLE_ENFORCE_NE(
915 916
        in_it,
        ctx_.inputs.end(),
917 918
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
919 920
        out_it,
        ctx_.outputs.end(),
921
        platform::errors::NotFound("Output %s does not exist.", out));
922 923
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
924 925 926
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
927 928 929 930
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
931 932 933
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
934 935
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
936 937

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
938
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
939
    Variable* out_var = out_it->second.at(j);
940
    PADDLE_ENFORCE_EQ(
941 942
        out_var->IsType<LoDTensor>(),
        true,
943 944
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
945
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
946 947
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
948

M
mozga-intel 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
968 969
  }

970
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
971
    PADDLE_THROW(platform::errors::PreconditionNotMet(
972
        "GetLoDLevel is only used in compile time. The calculation of "
973
        "output's actual lod is different among operators so that should be "
974
        "set in the runtime kernel."));
975 976
  }

977 978
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
979
                   size_t j = 0) const override {
980
    PADDLE_THROW(platform::errors::PreconditionNotMet(
981
        "SetLoDLevel is only used in compile time. The calculation of "
982
        "output's actual lod is different among operators so that should be "
983
        "set in the runtime kernel."));
C
chengduo 已提交
984 985
  }

986 987
  bool IsRuntime() const override { return true; }

988 989 990 991 992 993
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
994
    } catch (const std::bad_cast& exp) {
995 996 997 998
      return false;
    }
  }

999
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1000
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1001
  GetInputVarPtrs(const std::string& name) const override {
1002
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1003
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1004 1005 1006 1007 1008
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1009
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1010
  GetOutputVarPtrs(const std::string& name) const override {
1011
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1012
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1013 1014 1015 1016 1017
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1018 1019
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1020
    PADDLE_ENFORCE_EQ(
1021 1022
        vars.size(),
        1UL,
1023 1024
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1025 1026
            name,
            vars.size()));
X
Xin Pan 已提交
1027 1028 1029 1030 1031 1032 1033 1034
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1035 1036 1037 1038
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1049 1050
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1051
    PADDLE_ENFORCE_EQ(
1052 1053
        vars.size(),
        1UL,
1054 1055
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1056 1057
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1067 1068 1069 1070 1071 1072 1073 1074
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1075
 protected:
X
Xin Pan 已提交
1076
  DDim GetDim(Variable* var) const {
1077 1078
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1079 1080
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1081 1082
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1083
    } else {
1084 1085 1086 1087
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1088 1089 1090
    }
  }

X
Xin Pan 已提交
1091 1092 1093
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1094 1095 1096
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1097 1098 1099 1100
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1101
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1102 1103
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1104 1105
  }

X
Xin Pan 已提交
1106
  void SetDim(Variable* var, const DDim& dim) {
1107 1108
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1109 1110
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1111
    } else {
1112 1113 1114 1115
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1116 1117 1118 1119 1120 1121
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1122 1123
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1124 1125 1126 1127
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1128 1129
                          length,
                          dims.size()));
X
Xin Pan 已提交
1130 1131 1132 1133 1134
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1135 1136 1137
    }
  }

F
fengjiayi 已提交
1138 1139
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1140 1141
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1142 1143
  }

X
Xin Pan 已提交
1144 1145 1146 1147
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1148 1149 1150
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1151
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1152 1153
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1154 1155 1156 1157
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1158 1159 1160
    return ToVarType(var->Type());
  }

1161 1162 1163
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1164
    PADDLE_ENFORCE_NE(
1165 1166
        it,
        ctx_.inputs.end(),
1167 1168
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1169 1170 1171 1172 1173
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1174
    PADDLE_ENFORCE_NE(
1175 1176
        it,
        ctx_.outputs.end(),
1177 1178
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1179
    return it->second;
F
fengjiayi 已提交
1180 1181
  }

1182
  const OperatorBase& op_;
X
Xin Pan 已提交
1183
  const RuntimeContext& ctx_;
1184 1185
};

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1201 1202
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1203 1204 1205 1206
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1207 1208
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1209 1210
    return;
  }
1211
  PADDLE_ENFORCE_NE(
1212 1213 1214 1215
      framework::TensorContainsInf(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains Inf.", op_type, name));
1216
  PADDLE_ENFORCE_NE(
1217 1218 1219 1220
      framework::TensorContainsNAN(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains NAN.", op_type, name));
C
chengduoZH 已提交
1221 1222
}

1223 1224 1225 1226
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1227 1228
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1241 1242
          op_kernels.begin(),
          op_kernels.end(),
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1254 1255
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1268 1269
          op_kernels.begin(),
          op_kernels.end(),
1270 1271 1272 1273 1274 1275 1276
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1314 1315
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1341
  }
1342 1343
}

1344 1345 1346 1347
bool OperatorWithKernel::SupportsKernelType(
    const OpKernelType& kernel_type) const {
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1348 1349 1350 1351 1352
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1353
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1354 1355 1356
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1357 1358
  }
#endif
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

  return kernel_iter != kernels.end();
1380 1381
}

1382 1383
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1384 1385 1386
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
R
Ruibiao Chen 已提交
1387
                        PADDLE_GET_CONST(bool, iter->second) &&
1388
                        platform::is_cpu_place(ctx.GetPlace());
1389
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1390 1391
}

1392 1393 1394 1395 1396 1397 1398
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1399
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1400 1401
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1402
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1403
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1404 1405
}

L
luotao1 已提交
1406 1407
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1408 1409
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1410 1411 1412
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1413
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1414
    all_kernels_must_compute_runtime_shape_ = true;
1415
  const Scope* cur_scope = &scope;
1416
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1417 1418
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1419
    pre_scope_ = cur_scope;
1420 1421 1422 1423 1424
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*pt_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1425
  } else {
1426 1427 1428 1429 1430 1431
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1432 1433 1434 1435 1436 1437 1438 1439
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1440
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1441
  auto* dev_ctx = pool.Get(place);
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1453
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1454 1455 1456 1457
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1458

1459 1460 1461 1462 1463 1464
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1465 1466 1467 1468 1469
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1470
  phi::KernelKey pt_kernel_key;
1471
  std::string pt_kernel_name;
1472
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1473 1474 1475 1476
    if (kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1477 1478 1479 1480 1481

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1482
      pt_kernel_name = kernel_signature_->name;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
                  << pt_kernel_name
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is failed " << *kernel_type_.get();
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is succeed " << *kernel_type_.get();
          }
        }
      }
#endif
1522
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1523
      pt_kernel_.reset(
1524
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1525 1526 1527
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1528
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1529 1530 1531
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1532
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1533 1534
                << "` not found.";
      }
1535
    } else {
1536
      pt_kernel_name = kernel_signature_->name;
1537 1538 1539
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1558 1559
          VLOG(3) << "modifing XPU KP kernel in static graph: "
                  << pt_kernel_name
1560 1561 1562
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1563 1564
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
1565
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1566 1567 1568 1569 1570 1571
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is failed " << *kernel_type_.get();
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is succeed " << *kernel_type_.get();
1572 1573 1574 1575
          }
        }
      }
#endif
1576
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1577
    }
1578 1579 1580 1581

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1582
#if defined(PADDLE_WITH_XPU)
1583 1584 1585 1586 1587
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1599
    if (pt_kernel_->IsValid()
1600
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1601 1602
        && !is_xpu_unsupport
#endif
1603 1604 1605
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1606
    ) {
1607
      run_phi_kernel_ = true;
1608 1609 1610
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1621 1622 1623
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1624
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1625
          || is_xpu_unsupport
1626
#endif
1627 1628 1629
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1630
      ) {
1631 1632 1633
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1634
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1635 1636 1637 1638 1639 1640 1641
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1642
          run_phi_kernel_ = true;
1643 1644
        }
      }
1645 1646
    }
  }
1647
  if (!run_phi_kernel_) {
1648 1649
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1650
      dev_ctx = pool.Get(kernel_type_->place_);
1651
    }
1652 1653
  }

Y
yuyang18 已提交
1654 1655
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1656 1657
  Scope* transfer_scope = nullptr;
  {
1658
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1659
                                       platform::TracerEventType::OperatorInner,
1660 1661
                                       1,
                                       platform::EventRole::kInnerOp);
1662
    if (need_prepare_data_) {
1663 1664
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1665
    }
1666
  }
Y
yuyang18 已提交
1667 1668 1669 1670
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1671
  if (!all_kernels_must_compute_runtime_shape_) {
1672
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1673
                                       platform::TracerEventType::OperatorInner,
1674 1675
                                       1,
                                       platform::EventRole::kInnerOp);
1676
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1677
    this->Info().infer_shape_(&infer_shape_ctx);
1678 1679 1680
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1681
  }
1682 1683 1684 1685 1686

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1687 1688
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1689
  {
1690
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1691
                                       platform::TracerEventType::OperatorInner,
1692 1693
                                       1,
                                       platform::EventRole::kInnerOp);
1694
    if (run_phi_kernel_) {
1695
      phi::KernelContext pt_kernel_context;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
        (*pt_kernel_)(impl_->getKernelContext());
      } else {
        phi::KernelContext pt_kernel_context;
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
        (*pt_kernel_)(&pt_kernel_context);
      }
1710 1711 1712 1713
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1714
  }
D
dzhwinter 已提交
1715

Y
yuyang18 已提交
1716
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1717
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1718
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1719
  }
1720 1721 1722 1723 1724 1725 1726

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1727 1728 1729 1730 1731 1732 1733 1734
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1735

D
dzhwinter 已提交
1736
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1737
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1738
    dev_ctx->Wait();
1739 1740
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1741 1742
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1743
  }
C
chengduoZH 已提交
1744 1745

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1746
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1747
  }
1748 1749 1750 1751 1752 1753 1754

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1755
}
X
Xin Pan 已提交
1756

1757 1758 1759
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1760 1761 1762
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1773 1774 1775
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1776 1777
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1778
      if (SupportGPU()) {
1779
        auto& dev_ctx = ctx.device_context();
1780
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1781 1782
      }
#endif
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1802 1803 1804
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1805
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1806 1807 1808
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1809 1810
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1837 1838 1839
      }
    }
  }
C
cc 已提交
1840 1841
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1842 1843 1844
  return expected_kernel_key;
}

1845
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1846
    const ExecutionContext& ctx) const {
1847 1848 1849
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1850 1851 1852 1853

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1854
  auto pt_kernel_name = kernel_signature_->name;
1855
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1856 1857
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1858 1859

  if (pt_kernel_->IsValid()) {
1860
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1861 1862 1863
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1864
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1865 1866
            << "` not found.";
  }
1867
  return pt_kernel_key;
1868 1869 1870 1871 1872 1873 1874
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
1875 1876
      kernels_iter,
      all_op_kernels.end(),
1877 1878 1879 1880 1881 1882 1883
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1884 1885

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1886

L
Liu Yiqun 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1896
#endif
1897 1898

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1899
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1900 1901 1902
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1903
    VLOG(3) << "fluid missing XPU kernel: " << type_
1904 1905 1906 1907 1908
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1909
#endif
L
Liu-xiandong 已提交
1910 1911

#ifdef PADDLE_WITH_XPU_KP
1912 1913 1914 1915 1916 1917 1918
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1919
      VLOG(3) << "fluid xpu_kp using rt mode ";
1920 1921
    }
    if (use_xpu_kp_kernel_debug) {
1922
      VLOG(3) << "fluid xpu_kp using debug mode ";
1923 1924 1925
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1926 1927
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1928 1929
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1930 1931 1932 1933 1934 1935 1936 1937 1938
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
1939
        VLOG(3) << "fluid using XPU KP kernel: " << type_
1940 1941
                << ", using_kernel_key:" << expected_kernel_key;
      }
1942 1943 1944 1945 1946 1947
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
1948
      VLOG(3) << "fluid missing XPU kernel: " << type_
1949 1950 1951 1952 1953
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1954 1955 1956
  }
#endif

A
Allen Guo 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1967 1968
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1969
      platform::is_npu_place(expected_kernel_key.place_)) {
1970 1971 1972 1973 1974 1975
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1976 1977 1978
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1979
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1980 1981 1982
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1994 1995 1996
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1997
#endif
1998 1999 2000 2001 2002 2003
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2004

2005 2006 2007 2008 2009
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2010 2011
}

Y
yuyang18 已提交
2012
void OperatorWithKernel::TransferInplaceVarsBack(
2013 2014
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2015 2016
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2017
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2018
    auto* origin_var = scope.FindVar(var_name);
2019 2020 2021
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2022
    auto* original_tensor =
C
chengduo 已提交
2023
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2024
    auto* var = transfer_scope.FindVar(var_name);
2025 2026 2027
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2028
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2029
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2030
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2031 2032 2033 2034 2035
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2036 2037 2038
  }
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2068
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2088
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2106
Scope* OperatorWithKernel::PrepareData(
2107 2108
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2109 2110
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2111
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2112

2113
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2114 2115 2116 2117
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2118 2119
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2120 2121 2122
    }
  }

2123 2124 2125 2126 2127 2128 2129 2130 2131
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2132

Y
yuyang18 已提交
2133
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2134
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2135 2136 2137
        continue;
      }

C
chengduo 已提交
2138
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2154
            (paddle::platform::MKLDNNDeviceContext::tls()
2155 2156
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2157 2158 2159 2160 2161
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2162
          in_vars->at(i) = trans_var;
2163 2164
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
2165 2166
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2167 2168
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
2169
                  << in_name << " in Operator " << type_;
2170
        } else {
2171 2172
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2173 2174 2175 2176 2177
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2178 2179 2180 2181
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2195

2196 2197 2198 2199 2200
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
      if (run_phi_kernel_ && in_def->backend != phi::Backend::ALL_BACKEND) {
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2201 2202 2203
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
              tensor_backend != phi::Backend::XPU)) ||
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2218 2219
      }

M
minqiyang 已提交
2220
      VLOG(3) << "Transform Variable " << var_name << " from "
2221 2222 2223
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2224

2225 2226 2227
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
2228
      // We use a thread_local cache to fix that issue, the key in the cache is
2229 2230 2231 2232 2233
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2234 2235
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2236
      // variables, that behavior a lot different.
2237 2238 2239 2240 2241 2242
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2257
      }
2258

2259
      if (!new_scope) {
Y
yuyang18 已提交
2260 2261
        new_scope = &scope.NewScope();
      }
2262 2263 2264 2265
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2266
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2267 2268
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2269
      if (enable_cache_runtime_context_) {
2270 2271
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2272 2273

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2274
      auto* trans_var = new_scope->Var(var_name);
2275
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2276 2277 2278 2279 2280 2281 2282

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2283
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
2293
      Tensor out;
2294 2295 2296 2297 2298
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2299 2300
      SetTensorToVariable(*var, out, trans_var);
    }
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
    const auto& input_defs = pt_kernel_->args_def().input_defs();
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      const auto& input_defs = pt_kernel_->args_def().input_defs();
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2335
  }
L
Leo Chen 已提交
2336

2337 2338 2339 2340 2341 2342
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2343 2344 2345 2346 2347 2348

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2349 2350
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2351 2352 2353

  return new_scope;
}
Q
Qiao Longfei 已提交
2354

2355
void OperatorWithKernel::ParseInputDataType(
2356 2357
    const Variable* var,
    const std::string& name,
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
2377 2378
          t->IsInitialized(),
          true,
2379 2380
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
2381 2382
                                            Type(),
                                            name));
2383 2384 2385 2386 2387 2388
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2389 2390
    const std::vector<Variable*>& vars,
    const std::string& name,
2391
    proto::VarType::Type* data_type) const {
2392
  proto::VarType::Type default_data_type =
2393 2394 2395 2396 2397 2398 2399 2400 2401
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2402 2403
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2404
      } else if (var->IsType<LoDTensorArray>()) {
2405 2406 2407 2408
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2409 2410
          }
        }
2411 2412
      }
      if (t != nullptr) {
2413
        PADDLE_ENFORCE_EQ(
2414 2415
            t->IsInitialized(),
            true,
2416 2417
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
2418 2419
                                              Type(),
                                              name));
2420 2421
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2422 2423 2424 2425 2426 2427 2428
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2429 2430 2431
                           Type(),
                           name,
                           DataTypeToString(tmp),
2432
                           DataTypeToString(*data_type)));
2433 2434 2435 2436 2437 2438
        *data_type = tmp;
      }
    }
  }
}

2439
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2440
    const ExecutionContext& ctx) const {
2441 2442 2443
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2444 2445 2446 2447 2448 2449
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2450
  }
2451
  PADDLE_ENFORCE_NE(
2452 2453
      data_type,
      dafault_data_type,
2454 2455
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2456 2457 2458 2459 2460 2461 2462 2463
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2464 2465 2466 2467 2468
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2469
  PADDLE_ENFORCE_NE(
2470 2471
      data_type,
      dafault_data_type,
2472 2473 2474 2475
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
2476 2477
          name,
          Type()));
2478
  return data_type;
Y
Yu Yang 已提交
2479
}
2480

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2499 2500
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2501 2502 2503 2504 2505 2506 2507 2508
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
2509 2510
  PADDLE_ENFORCE_EQ(t->IsInitialized(),
                    true,
2511 2512 2513
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
2514 2515 2516
                        Type(),
                        name,
                        ctx.InputName(name)));
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2528 2529
    const ExecutionContext& ctx,
    const std::string& name1,
2530 2531 2532 2533 2534 2535
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2536 2537
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2538 2539 2540 2541 2542 2543 2544

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2545 2546 2547 2548 2549 2550
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2551 2552
    const std::string& var_name,
    const Tensor& tensor,
2553
    const OpKernelType& expected_kernel_type) const {
2554 2555
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2556 2557
}

2558
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2559
    const ExecutionContext& ctx) const {
2560
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2561
  if (arg_map_fn_ == nullptr) {
2562 2563 2564 2565
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2566 2567 2568
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2569 2570 2571 2572
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2573 2574
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2575 2576
}

2577
void OperatorWithKernel::BuildPhiKernelContext(
2578 2579
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2580
    phi::KernelContext* pt_kernel_context) const {
2581
  pt_kernel_context->SetDeviceContext(dev_ctx);
2582

2583 2584 2585
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2586 2587 2588 2589 2590

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

2591 2592
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2593 2594 2595
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2596 2597
                        input_names.size(),
                        input_defs.size()));
2598

2599 2600
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2601 2602 2603
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2604 2605
                        output_names.size(),
                        output_defs.size()));
2606

2607 2608
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2609 2610 2611
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2612 2613
                        attr_names.size(),
                        attr_defs.size()));
2614 2615

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2616
    auto it = ctx.inputs.find(input_names[i]);
2617 2618 2619

    // calcute the start and end index of the input tensors
    size_t start_idx =
2620
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2621
    // deal with optional here
2622
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2623
        (input_defs[i].type_index ==
2624
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2625
         input_defs[i].type_index ==
2626
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2627
         input_defs[i].type_index ==
2628 2629
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2630 2631 2632 2633
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
2634

H
hong 已提交
2635 2636 2637 2638
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2639
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2640
      const phi::TensorBase* tensor_in = nullptr;
2641
      auto* var = ins_vector[offset];
H
hong 已提交
2642 2643
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2644
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2645 2646
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2647 2648
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
2649
        need_prepare_phi_data_ = true;
C
Chen Weihang 已提交
2650
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
2651 2652 2653 2654 2655 2656
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2657 2658 2659 2660
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2661
      }
2662
    }
2663
    // Note: here cannot deal with vector<LoDTensorArray> input
2664
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2665
  }
2666
  VLOG(4) << "Done inputs";
2667 2668

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2669
    auto it = ctx.outputs.find(output_names[i]);
2670
    size_t start_idx =
2671
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2686
    size_t end_idx = start_idx + outs_vector.size();
2687 2688

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2689
      phi::TensorBase* tensor_out = nullptr;
2690
      auto* var = outs_vector[offset];
2691 2692 2693
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2694
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2695 2696
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2697 2698
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
2699
          paddle::small_vector<phi::TensorBase*> tensor_vector;
2700 2701 2702 2703 2704 2705 2706 2707 2708
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2709 2710 2711 2712 2713
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2714 2715
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2716
      }
2717
    }
2718
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2719
  }
2720
  VLOG(4) << "Done outputs";
2721 2722

  for (size_t i = 0; i < attr_names.size(); ++i) {
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
              pt_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2733
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2734 2735 2736
              break;
            case proto::AttrType::INT:
              pt_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2737
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2738 2739 2740
              break;
            case proto::AttrType::STRING:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2741
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2742 2743 2744 2745 2746 2747 2748 2749
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2750
          need_prepare_phi_data_ = true;
2751
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2752
          pt_kernel_context->EmplaceBackAttr(std::move(
2753
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2754
        }
2755 2756 2757 2758 2759 2760
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2761
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2762 2763 2764
              break;
            case proto::AttrType::LONGS:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2765
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2766 2767 2768
              break;
            case proto::AttrType::INT:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2769
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2770 2771 2772
              break;
            case proto::AttrType::LONG:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2773
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2774 2775 2776 2777 2778 2779 2780 2781
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2782
          need_prepare_phi_data_ = true;
2783 2784 2785 2786 2787 2788 2789 2790
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
            pt_kernel_context->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
            pt_kernel_context->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2791
        }
2792 2793 2794
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
2795 2796
            attr_iter,
            Attrs().end(),
2797 2798 2799 2800 2801 2802
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2803
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
2804 2805 2806 2807 2808 2809 2810 2811 2812
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2813
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
2814 2815 2816 2817 2818 2819 2820 2821 2822
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2823
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
2824 2825 2826 2827 2828 2829 2830 2831 2832
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
2833
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
2834 2835 2836 2837 2838 2839 2840 2841 2842
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2843
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2855 2856
                attr_names[i]));
        }
2857 2858 2859
      } break;
      default: {
        PADDLE_ENFORCE_NE(
2860 2861
            attr_iter,
            Attrs().end(),
2862 2863 2864 2865 2866 2867
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2868
                PADDLE_GET_CONST(float, attr_iter->second));
2869 2870 2871
            break;
          case phi::AttributeType::INT32:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2872
                PADDLE_GET_CONST(int, attr_iter->second));
2873 2874 2875
            break;
          case phi::AttributeType::BOOL:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2876
                PADDLE_GET_CONST(bool, attr_iter->second));
2877 2878 2879
            break;
          case phi::AttributeType::INT64:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2880
                PADDLE_GET_CONST(int64_t, attr_iter->second));
2881 2882 2883
            break;
          case phi::AttributeType::INT32S:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2884
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
2885 2886 2887 2888
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
2889
                    PADDLE_GET_CONST(int, attr_iter->second)));
2890 2891 2892 2893
            pt_kernel_context->EmplaceBackAttr(data_type);
          } break;
          case phi::AttributeType::STRING:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2894
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
2895 2896 2897 2898 2899
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
                pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2900
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
2901 2902 2903
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
2904
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
                pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2919
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
2920 2921 2922
            break;
          case phi::AttributeType::STRINGS:
            pt_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2923
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
2924 2925 2926 2927 2928 2929
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
2930
        }
2931 2932 2933
      }
    }
  }
2934
  VLOG(4) << "Done attributes";
2935 2936
}

Q
Qiao Longfei 已提交
2937
}  // namespace framework
L
liaogang 已提交
2938
}  // namespace paddle