operator.cc 75.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32
#include "paddle/pten/common/scalar.h"
33
#include "paddle/pten/common/scalar_array.h"
34 35 36

namespace paddle {
namespace framework {
37
class Tensor;
38 39
}  // namespace framework
}  // namespace paddle
40
#ifdef PADDLE_WITH_XPU
41 42
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
43
#endif
Q
Qiao Longfei 已提交
44

45 46 47 48
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
49 50 51 52
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
53
DECLARE_bool(benchmark);
54
DECLARE_bool(check_nan_inf);
55
DECLARE_bool(enable_unused_var_check);
56 57
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
58
DECLARE_bool(run_pten_kernel);
F
Feng Xing 已提交
59
DECLARE_bool(run_kp_kernel);
D
dzhwinter 已提交
60

Q
Qiao Longfei 已提交
61 62 63
namespace paddle {
namespace framework {

64 65 66 67 68 69
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
70

71
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
72
                         bool get_actual_dim = false) {
73
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
74 75
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
76 77
  }

M
minqiyang 已提交
78 79 80 81 82 83 84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
S
Steffy-zxf 已提交
87 88
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
89 90 91 92 93
  } else {
    return DDim({-1});
  }
}

94
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
95 96 97 98 99
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

100
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
105

M
minqiyang 已提交
106 107 108
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
109 110
      return "";
    }
Y
Yu Yang 已提交
111
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
112
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
113 114 115 116
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
117
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
118
    }
S
Steffy-zxf 已提交
119 120
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
121 122 123 124 125
  } else {
    return "";
  }
}

126
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

155
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
156 157 158 159 160
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
161 162
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
163 164 165 166 167
  }

  return -1;
}

168
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
169 170 171 172 173 174 175
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
176 177 178
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
179 180 181 182 183
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
184 185 186 187 188
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
189
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
190 191 192 193 194 195
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
196
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
197 198 199 200 201 202
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

203
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
204 205 206
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
207
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
208 209 210 211
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
212
#else
213
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
214
      platform::SetDeviceId(dev_id);
215 216 217
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
218 219 220 221
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
222 223 224
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
225 226 227 228 229 230 231 232 233 234
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::NPUPlace, place).device;
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
235 236 237 238 239 240 241 242 243 244
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
      auto dev_id = BOOST_GET_CONST(platform::MLUPlace, place).device;
      platform::SetMLUDeviceId(dev_id);
245
#endif
P
peizhilin 已提交
246
    }
P
peizhilin 已提交
247

248
    {
249 250 251 252 253 254
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
255
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
256 257
      RunImpl(scope, place);
    }
258

Z
Zhang Ting 已提交
259
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
260
  } catch (platform::EnforceNotMet& exception) {
261
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
262
    throw std::move(exception);
263 264 265 266 267 268
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
269
  } catch (...) {
270
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
271
    std::rethrow_exception(std::current_exception());
272
  }
273 274
}

275
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
276
  return inputs_.find(name) != inputs_.end();
277 278
}

279
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
280
  auto& ins = Inputs(name);
281 282
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
283
      platform::errors::InvalidArgument(
284 285
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
286
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
287 288
}

Y
Yu Yang 已提交
289 290
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
291
  auto it = inputs_.find(name);
292 293 294 295
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
296
  return it->second;
Y
Yan Chunwei 已提交
297 298
}

299
bool OperatorBase::HasOutputs(const std::string& name) const {
300
  if (outputs_.find(name) != outputs_.end()) {
301 302 303 304 305 306
    return true;
  } else {
    return false;
  }
}

307
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
308
  auto& outs = Outputs(name);
309 310 311 312 313
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
314
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
315 316
}

Y
Yu Yang 已提交
317 318
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
319
  auto it = outputs_.find(name);
320 321 322 323
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
324
  return it->second;
Y
Yan Chunwei 已提交
325 326
}

327
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
328
  std::stringstream ss;
Y
Yu Yang 已提交
329
  ss << "Op(" << type_ << "), inputs:{";
330

331
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
332 333
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
334 335
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
336 337
  }

Y
Yu Yang 已提交
338 339
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
340 341
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
342 343
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
344 345
      auto var_name = input.second[i];
      ss << var_name;
346
      if (scope) {
Q
Qiao Longfei 已提交
347 348 349 350 351 352 353
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
354 355 356
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
357
          ss << ":" << dtype;
358 359
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
360
          ss << "(" << GetPlace(*scope, var_name) << ")";
361
        }
362
      }
Y
Yu Yang 已提交
363 364 365
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
366
    }
Y
Yu Yang 已提交
367
    ss << "]";
Y
Yu Yang 已提交
368 369
    ++it;
    if (it != inputs_.end()) {
370 371
      ss << ", ";
    }
Q
Qiao Longfei 已提交
372
  }
Y
Yu Yang 已提交
373
  ss << "}, outputs:{";
Y
Yu Yang 已提交
374 375
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
376 377
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
378 379
      auto var_name = output.second[i];
      ss << var_name;
380
      if (scope) {
Q
Qiao Longfei 已提交
381 382 383 384 385 386 387
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
388 389
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
390 391
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
392
          ss << "(" << GetPlace(*scope, var_name) << ")";
393
        }
394
      }
Y
Yu Yang 已提交
395 396 397
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
398
    }
Y
Yu Yang 已提交
399
    ss << "]";
Y
Yu Yang 已提交
400 401
    ++it;
    if (it != outputs_.end()) {
402 403
      ss << ", ";
    }
Q
Qiao Longfei 已提交
404
  }
Y
Yu Yang 已提交
405
  ss << "}.";
Q
Qiao Longfei 已提交
406 407 408
  return ss.str();
}

Y
Yu Yang 已提交
409
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
410 411
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
412
                           const AttributeMap& attrs)
S
sneaxiy 已提交
413 414 415 416 417 418
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
419 420 421 422 423 424 425 426
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
427
}
428

Q
qijun 已提交
429 430
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
431
  for (auto& o : inputs_) {
Q
qijun 已提交
432 433 434 435 436 437
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
438 439 440 441 442 443 444 445 446 447
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
448
  auto& info = Info();
Y
Yu Yang 已提交
449 450

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
451
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
452 453 454 455 456 457 458 459 460
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
461 462
}

463
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
464
  if (info_ == nullptr || info_->proto_ == nullptr) return;
465

S
sneaxiy 已提交
466
  for (auto& in : info_->Proto().inputs()) {
467
    if (!in.dispensable() && !in.extra()) {
468 469 470 471
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
472
    }
473 474
  }

S
sneaxiy 已提交
475
  for (auto& out : info_->Proto().outputs()) {
476
    if (!out.dispensable() && !out.extra()) {
477 478 479 480
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
481
    }
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
497

C
chengduo 已提交
498
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
499 500 501 502
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
503
  } else {
504 505 506
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
507 508 509
  }
}

C
chengduo 已提交
510
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
511
  if (var->IsType<LoDTensor>()) {
512
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
513
  } else if (var->IsType<SelectedRows>()) {
514
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
515
  } else {
516 517 518
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
519 520 521
  }
}

522
bool ExecutionContext::HasInput(const std::string& name) const {
523
  auto* var = InputVar(name);
524 525 526 527
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
528
  auto* var = OutputVar(name);
529 530 531
  return var != nullptr;
}

X
Xin Pan 已提交
532
const Variable* ExecutionContext::InputVar(const std::string& name) const {
533 534
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
535 536 537
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

538 539
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
540
      platform::errors::InvalidArgument(
541 542
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
543 544 545
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
546
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
547 548 549
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

550 551 552 553 554
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
555 556 557
  return it->second.empty() ? nullptr : it->second[0];
}

558
template <>
559
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
560
    const std::string& name) const {
561 562
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
563 564
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
565 566 567 568 569
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
570
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
571
                   if (var == nullptr) return nullptr;
572 573 574 575 576
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
577 578 579 580 581
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

582
template <>
583
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
584
    const std::string& name) const {
H
hong 已提交
585 586 587
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
588 589
    return {};
  }
590
  std::vector<Tensor*> res;
591 592 593 594 595
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
596
                 });
597 598 599
  return res;
}

Y
Yu Yang 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

615 616
class RuntimeInferShapeContext : public InferShapeContext {
 public:
617
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
618
      : op_(op), ctx_(ctx) {}
619 620

  bool HasInput(const std::string& name) const override {
621
    // has only one input
X
Xin Pan 已提交
622
    const auto& ins = ctx_.inputs;
623 624
    auto it = ins.find(name);
    if (it == ins.end()) {
625 626
      return false;
    }
627
    const auto& in = it->second;
X
Xin Pan 已提交
628
    if (in.size() == 0) return false;
629 630 631 632
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
633
    return in[0] != nullptr;
634 635 636
  }

  bool HasOutput(const std::string& name) const override {
637
    // has only one output
X
Xin Pan 已提交
638
    const auto& outs = ctx_.outputs;
639 640
    auto it = outs.find(name);
    if (it == outs.end()) {
641 642
      return false;
    }
643
    const auto& out = it->second;
X
Xin Pan 已提交
644
    if (out.size() == 0) {
645 646
      return false;
    }
647 648 649 650
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
651
    return out[0] != nullptr;
652 653 654
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
655 656
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
657
    if (it == ins.end() || it->second.empty()) {
658 659
      return false;
    }
X
Xin Pan 已提交
660 661
    for (auto& input : it->second) {
      if (input == nullptr) {
662 663 664 665 666 667 668
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
669 670
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
671
    if (it == outs.end() || it->second.empty()) {
672 673
      return false;
    }
X
Xin Pan 已提交
674 675
    for (auto& output : it->second) {
      if (output == nullptr) {
676 677 678 679 680 681 682 683
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
684
  std::vector<std::string> Inputs(const std::string& name) const override {
685 686 687
    return op_.Inputs(name);
  }

H
hong 已提交
688
  std::vector<std::string> Outputs(const std::string& name) const override {
689 690 691
    return op_.Outputs(name);
  }

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

715 716
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
717 718
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
735 736 737

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
738

739 740 741 742 743
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
744 745 746 747 748 749 750 751 752 753 754 755

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
756
      PADDLE_THROW(platform::errors::Unimplemented(
757
          "Currently, the input type of ShareDim only can be LoDTensor "
758
          "or SelectedRows."));
759 760 761
    }
  }

H
hong 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
780
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
807 808
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
809 810
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
827 828

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
829
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
830
    Variable* out_var = out_it->second.at(j);
831 832 833 834
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
835
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
836 837
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
838

M
mozga-intel 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
858 859
  }

860
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
861
    PADDLE_THROW(platform::errors::PreconditionNotMet(
862
        "GetLoDLevel is only used in compile time. The calculation of "
863
        "output's actual lod is different among operators so that should be "
864
        "set in the runtime kernel."));
865 866
  }

867 868
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
869
    PADDLE_THROW(platform::errors::PreconditionNotMet(
870
        "SetLoDLevel is only used in compile time. The calculation of "
871
        "output's actual lod is different among operators so that should be "
872
        "set in the runtime kernel."));
C
chengduo 已提交
873 874
  }

875 876
  bool IsRuntime() const override { return true; }

877 878 879 880 881 882 883 884 885 886 887
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

888 889
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
890
      const std::string& name) const override {
891 892 893 894 895 896 897 898
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
899
      const std::string& name) const override {
900 901 902 903 904 905 906
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
907 908
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
909 910 911 912 913
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
914 915 916 917 918 919 920 921
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
922 923 924 925 926 927 928 929 930 931
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
932 933
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
934 935 936 937 938
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
939 940 941 942 943 944 945 946 947
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

948
 protected:
X
Xin Pan 已提交
949
  DDim GetDim(Variable* var) const {
950 951
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
952 953 954 955 956
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
957 958 959 960
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
961 962 963
    }
  }

X
Xin Pan 已提交
964 965 966 967 968 969 970 971
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
972
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
973 974
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
975 976
  }

X
Xin Pan 已提交
977
  void SetDim(Variable* var, const DDim& dim) {
978 979 980 981 982
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
983 984 985 986
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
987 988 989 990 991 992
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
993 994 995 996 997 998
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
999 1000 1001 1002 1003
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1004 1005 1006
    }
  }

F
fengjiayi 已提交
1007 1008
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1009 1010
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1011 1012
  }

X
Xin Pan 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1024 1025 1026
    return ToVarType(var->Type());
  }

1027 1028 1029
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1030 1031 1032 1033
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1034 1035 1036 1037 1038
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1039 1040 1041 1042
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1043
    return it->second;
F
fengjiayi 已提交
1044 1045
  }

1046
  const OperatorBase& op_;
X
Xin Pan 已提交
1047
  const RuntimeContext& ctx_;
1048 1049
};

1050 1051
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1052 1053 1054 1055
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1056 1057
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1058 1059
    return;
  }
1060 1061 1062 1063 1064 1065 1066 1067
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1068 1069
}

1070 1071
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1072 1073
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1074
                     [data_type](OpKernelMap::const_reference kern_pair) {
1075 1076
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1077 1078
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1079 1080 1081
                     });
}

1082 1083
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1084 1085 1086
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1087
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1088 1089
}

B
baojun-nervana 已提交
1090
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1091 1092
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1093
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1094
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1095 1096
}

L
luotao1 已提交
1097 1098
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1099 1100
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1101 1102 1103
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1104
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1105
    all_kernels_must_compute_runtime_shape_ = true;
1106
  const Scope* cur_scope = &scope;
1107
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1108 1109
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1110
    pre_scope_ = cur_scope;
L
luotao1 已提交
1111
  } else {
1112 1113 1114 1115 1116 1117
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1118 1119 1120 1121 1122 1123 1124 1125
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1126
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1127
  auto* dev_ctx = pool.Get(place);
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1139 1140 1141 1142 1143 1144 1145 1146 1147
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
  if (FLAGS_run_pten_kernel &&
      pten::KernelFactory::Instance().HasCompatiblePtenKernel(type_)) {
1148
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1149 1150 1151 1152 1153 1154 1155 1156
      ChoosePtenKernel(exe_ctx);
    }
    run_pten_kernel_ = pt_kernel_->IsValid();
  }
  if (!run_pten_kernel_) {
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
    }
1157 1158
  }

Y
yuyang18 已提交
1159 1160
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1161 1162
  Scope* transfer_scope = nullptr;
  {
1163
    platform::RecordEvent record_event("prepare_data",
1164
                                       platform::EventRole::kInnerOp);
1165 1166 1167 1168
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1169
  }
Y
yuyang18 已提交
1170 1171 1172 1173
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1174 1175
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1176
  }
Q
QI JUN 已提交
1177

1178
  if (!all_kernels_must_compute_runtime_shape_) {
1179
    platform::RecordEvent record_event("infer_shape",
1180
                                       platform::EventRole::kInnerOp);
1181
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1182
    this->Info().infer_shape_(&infer_shape_ctx);
1183
  }
1184 1185 1186 1187 1188

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1189 1190
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1191
  {
1192
    platform::RecordEvent record_event("compute",
1193
                                       platform::EventRole::kInnerOp);
1194
    if (run_pten_kernel_) {
1195 1196 1197 1198 1199
      if (pt_kernel_context_ == nullptr) {
        pt_kernel_context_.reset(new pten::KernelContext());
      }
      BuildPtenKernelContext(*runtime_ctx, dev_ctx);
      (*pt_kernel_)(pt_kernel_context_.get());
1200
      WriteBackToOutputs(runtime_ctx);
1201
      pt_kernel_context_->ClearData();
1202 1203 1204 1205
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1206
  }
D
dzhwinter 已提交
1207

Y
yuyang18 已提交
1208
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1209
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1210
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1211
  }
1212 1213 1214 1215 1216 1217 1218

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1219 1220 1221 1222 1223 1224 1225 1226
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1227

D
dzhwinter 已提交
1228
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1229
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1230
    dev_ctx->Wait();
1231 1232
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1233 1234
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1235
  }
C
chengduoZH 已提交
1236 1237

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1238
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1239
  }
1240 1241 1242 1243 1244 1245 1246

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1247
}
X
Xin Pan 已提交
1248

1249 1250 1251
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto& dev_ctx = ctx.device_context();
L
Liu Yiqun 已提交
1252

1253
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1254 1255 1256
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1267 1268 1269
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
1270
        expected_kernel_key.place_ = dev_ctx.GetPlace();
B
Baibaifan 已提交
1271
      } else if (SupportNPU()) {
1272
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1273 1274 1275 1276 1277 1278 1279 1280
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1281 1282
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1283 1284 1285 1286 1287 1288
  return expected_kernel_key;
}

void OperatorWithKernel::ChoosePtenKernel(const ExecutionContext& ctx) const {
  pt_kernel_signature_.reset(
      new KernelSignature(std::move(this->GetExpectedPtenKernelArgs(ctx))));
1289
  VLOG(6) << *pt_kernel_signature_.get();
1290 1291 1292 1293

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1294
  auto pt_kernel_name = pt_kernel_signature_->name;
1295 1296 1297 1298 1299 1300
  auto pt_kernel_key = TransOpKernelTypeToPtenKernelKey(*kernel_type_.get());
  pt_kernel_.reset(
      new pten::Kernel(pten::KernelFactory::Instance().SelectKernel(
          pt_kernel_name, pt_kernel_key)));

  if (pt_kernel_->IsValid()) {
C
Chen Weihang 已提交
1301
    VLOG(6) << "Static mode ChoosePtenKernel - kernel name: " << pt_kernel_name
1302 1303 1304
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
C
Chen Weihang 已提交
1305
    VLOG(6) << "Static mode ChoosePtenKernel - kernel `" << pt_kernel_name
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
            << "` not found.";
  }
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1334 1335
#endif
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
1336 1337 1338 1339
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1340 1341 1342 1343 1344 1345
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
      is_mlu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1366
#endif
1367 1368 1369 1370
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1371

1372 1373 1374 1375 1376
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1377 1378
}

Y
yuyang18 已提交
1379 1380 1381 1382
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1383
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1384
    auto* origin_var = scope.FindVar(var_name);
1385 1386 1387
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1388
    auto* original_tensor =
C
chengduo 已提交
1389
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1390
    auto* var = transfer_scope.FindVar(var_name);
1391 1392
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1393
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1394
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1395
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1396 1397 1398 1399 1400
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1401 1402 1403
  }
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1471
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1472
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1473 1474
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1475
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1476

1477
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1478 1479 1480 1481
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1482 1483
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1484 1485 1486
    }
  }

Y
yuyang18 已提交
1487
  for (auto& var_name_item : Inputs()) {
1488 1489
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1490

X
Xin Pan 已提交
1491 1492 1493 1494
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1495
      auto* var = input_vars[i];
X
Xin Pan 已提交
1496

Y
yuyang18 已提交
1497
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1498
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1499 1500 1501
        continue;
      }

C
chengduo 已提交
1502
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1518 1519
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1552 1553
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1554

1555 1556 1557
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1558
      // We use a thread_local cache to fix that issue, the key in the cache is
1559 1560 1561 1562 1563
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1564 1565
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1566
      // variables, that behavior a lot different.
1567 1568 1569 1570 1571 1572 1573 1574 1575
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1576 1577
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1578
        enable_cache_transfer_scope_ = true;
1579
      }
1580
      if (!new_scope) {
Y
yuyang18 已提交
1581 1582
        new_scope = &scope.NewScope();
      }
1583 1584 1585 1586
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1587
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1588 1589
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1590
      if (enable_cache_runtime_context_) {
1591 1592
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1593 1594

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1595
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1596
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1614
      Tensor out;
Y
yuyang18 已提交
1615
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1616 1617 1618
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1619

1620 1621 1622 1623 1624 1625
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1626 1627 1628 1629 1630 1631

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1632 1633
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1634 1635 1636

  return new_scope;
}
Q
Qiao Longfei 已提交
1637

1638
void OperatorWithKernel::ParseInputDataType(
1639
    const std::vector<Variable*>& vars, const std::string& name,
1640
    proto::VarType::Type* data_type) const {
1641
  proto::VarType::Type default_data_type =
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1653
      } else if (var->IsType<LoDTensorArray>()) {
1654 1655 1656 1657
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1658 1659
          }
        }
1660 1661
      }
      if (t != nullptr) {
1662 1663
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1664 1665 1666
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1667
        proto::VarType::Type tmp = t->type();
1668 1669 1670 1671 1672 1673 1674 1675 1676
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1677 1678 1679 1680 1681 1682
        *data_type = tmp;
      }
    }
  }
}

1683
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1684
    const ExecutionContext& ctx) const {
1685 1686 1687
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1688
  for (auto& input : ctx.InNameList()) {
1689 1690
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
1691
  }
1692 1693 1694 1695
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1696 1697 1698 1699 1700 1701 1702 1703
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
1704
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
1705 1706
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1707 1708 1709 1710 1711
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1712
  return data_type;
Y
Yu Yang 已提交
1713
}
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1775 1776 1777 1778 1779 1780 1781 1782
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1783 1784
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1785 1786
}

1787 1788
KernelSignature OperatorWithKernel::GetExpectedPtenKernelArgs(
    const ExecutionContext& ctx) const {
Y
YuanRisheng 已提交
1789 1790
  return KernelSignatureMap::Instance().Get(
      pten::TransToPtenKernelName(Type()));
1791 1792
}

1793 1794
void OperatorWithKernel::BuildPtenKernelContext(
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx) const {
1795 1796 1797
  if (pt_kernel_context_ == nullptr) {
    pt_kernel_context_.reset(new pten::KernelContext());
  }
1798 1799 1800 1801 1802 1803 1804
  // TODO(chenweihang): now only work for very simple case,
  // many cases need to be deal with later:
  // 1. the input and output are not tensor
  // 2. the dispensbale, duplicable input and output
  // 3. needless attributes remove
  // 4. use pt Tensor directly
  // 5. kernel input is not DenseTensor
1805
  pt_kernel_context_->SetDeviceContext(dev_ctx);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
1834 1835
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ctx.inputs.at(input_names[i]);
1836 1837 1838 1839 1840

    // calcute the start and end index of the input tensors
    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    auto current_vector_size = pt_kernel_context_->InputsSize();

    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      if (current_vector_size > start_idx + offset) {
        auto& input_ptr =
            pt_kernel_context_->MutableInputPtrAt(start_idx + offset);
        if (input_ptr == nullptr) {
          input_ptr = experimental::MakePtenTensorBaseFromVar(
              *ins_vector[offset], in_def);
        } else {
1854
          experimental::ReMakePtenDenseTensorFromVar(
1855
              *ins_vector[offset], in_def,
1856
              pt_kernel_context_->MutableInputAt<pten::DenseTensor>(start_idx +
1857
                                                                    offset));
1858
        }
1859 1860 1861 1862
      } else {
        pt_kernel_context_->EmplaceBackInputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(*ins_vector[offset],
                                                    in_def));
1863
      }
1864
    }
1865
    pt_kernel_context_->AssignInputRange(std::make_pair(start_idx, end_idx), i);
1866 1867 1868
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
1869 1870
    auto& out_def = output_defs.at(i);
    auto& outs_vector = ctx.outputs.at(output_names[i]);
1871 1872 1873 1874

    size_t start_idx =
        (i == 0 ? 0 : pt_kernel_context_->OutputRangeAt(i - 1).second);
    size_t end_idx = start_idx + outs_vector.size();
1875 1876 1877 1878 1879 1880 1881
    auto current_vector_size = pt_kernel_context_->OutputsSize();

    // If the memory needed is less than the current memory allocated, we will
    // reuse the current memory by using ReMakePtenDenseTensorFromVar.
    // Otherwise,we will create new storage.
    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (current_vector_size > start_idx + offset) {
1882
        auto* buffer_tensor =
1883
            pt_kernel_context_->MutableOutputAt<pten::DenseTensor>(start_idx +
1884 1885 1886 1887 1888
                                                                   offset);
        if (buffer_tensor) {
          experimental::ReMakePtenDenseTensorFromVar(outs_vector[offset],
                                                     out_def, buffer_tensor);
        }
1889 1890 1891 1892
      } else {
        pt_kernel_context_->EmplaceBackOutputWithoutSetRange(
            experimental::MakePtenTensorBaseFromVar(outs_vector[offset],
                                                    out_def));
1893
      }
1894
    }
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

    // Deal with the case that some outputs are NULL when run the kernel.
    // For example : the outputs of matmul_grad are dx and dy,
    // sometimes dx or dy may be NULL.
    if (outs_vector.empty()) {
      if (current_vector_size > start_idx) {
        pt_kernel_context_->SetOutputWithoutSetRange(start_idx, {nullptr});
      } else {
        pt_kernel_context_->EmplaceBackOutputWithoutSetRange({nullptr});
      }
      end_idx = start_idx + 1;
    }

1908 1909
    pt_kernel_context_->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
1910 1911 1912
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
1913 1914 1915 1916 1917 1918 1919
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context_->EmplaceBackAttr(std::move(pten::ScalarArray(
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
1920 1921 1922 1923
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          pt_kernel_context_->EmplaceBackAttr(std::move(pten::ScalarArray(
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to ScalarArray when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          pt_kernel_context_->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(*ins_vector.front())));
        } else {  // ShapeTensorList
          pt_kernel_context_->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(ins_vector)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
1942 1943 1944
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          pt_kernel_context_->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          pt_kernel_context_->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
1961
      } else {
1962 1963 1964
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        pt_kernel_context_->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(*ins_vector.front())));
1965
      }
1966

1967 1968
    } else {
      // TODO(chenweihang): support other attrs later
1969
      auto& attr = Attrs().at(attr_names[i]);
1970
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
1971
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
1972
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
1973
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
1974
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
1975
        pt_kernel_context_->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
1976
      } else if (attr_defs[i].type_index ==
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        pt_kernel_context_->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          pt_kernel_context_->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr

1994 1995
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
1996
            "Unsupported cast op attribute `%s` when construct "
1997 1998 1999 2000 2001 2002 2003
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
void OperatorWithKernel::WriteBackToOutputs(RuntimeContext* ctx) const {
  // auto& input_names = std::get<0>(pt_kernel_signature_->args);
  // auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  // pt_kernel_context_

  for (size_t i = 0; i < output_names.size(); ++i) {
    auto& outs_vector = ctx->outputs.at(output_names[i]);

    auto& range_pair = pt_kernel_context_->OutputRangeAt(i);
    auto pten_outs =
        pt_kernel_context_->MutableOutputBetween<pten::DenseTensor>(
            range_pair.first, range_pair.second);

    for (size_t j = 0; j < pten_outs.size(); ++j) {
2020 2021 2022
      if (pten_outs[j]) {
        experimental::MakeVariableFromPtenTensor(pten_outs[j], outs_vector[j]);
      }
2023 2024 2025 2026
    }
  }
}

Q
Qiao Longfei 已提交
2027
}  // namespace framework
L
liaogang 已提交
2028
}  // namespace paddle