device_context.h 27.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
13
#include <functional>
14
#include <future>  // NOLINT
D
dzhwinter 已提交
15
#include <memory>
Y
yuyang18 已提交
16
#include <mutex>  // NOLINT
17
#include <string>
D
dzhwinter 已提交
18
#include <unordered_map>
19
#include <utility>
20
#include <vector>
W
wanghuancoder 已提交
21

W
Wilber 已提交
22
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
23
#include "paddle/phi/backends/cpu/cpu_context.h"
24
#include "paddle/phi/backends/custom/custom_context.h"
25 26
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/device_context.h"
W
Wilber 已提交
27

Y
Yu Yang 已提交
28
#include "paddle/fluid/memory/malloc.h"
29
#ifdef PADDLE_WITH_CUDA
30
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
31 32
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
33
#include "paddle/fluid/platform/dynload/cusolver.h"
34
#include "paddle/fluid/platform/dynload/cusparse.h"
35
#include "paddle/phi/backends/gpu/gpu_context.h"
36
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
37
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
38
#endif
39
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
40
#endif
D
dzhwinter 已提交
41

42
#ifdef PADDLE_WITH_HIP
43
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
44 45
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
46
#include "paddle/phi/backends/gpu/gpu_context.h"  // NOLINT
47 48 49
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
50
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
51 52
#endif

53 54 55 56
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
57
#ifdef PADDLE_WITH_MKLDNN
58
#include "dnnl.hpp"
59
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
60 61
#endif

62
#include <map>
W
wanghuancoder 已提交
63

64
#include "glog/logging.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
68
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
69
#endif
70
#ifdef PADDLE_WITH_ASCEND_CL
71 72
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
73
#endif
74 75 76

#include "paddle/fluid/platform/device/device_ext.h"
#include "paddle/fluid/platform/device/stream.h"
77 78

#if !defined(PADDLE_WITH_XPU_KP) || defined(__xpu_on_host__)
Q
qijun 已提交
79
#include "unsupported/Eigen/CXX11/Tensor"
80
#endif
Q
QI JUN 已提交
81

W
wanghuancoder 已提交
82 83 84 85 86
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

87
#ifdef PADDLE_WITH_XPU
88 89
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
90
#include "paddle/phi/backends/xpu/xpu_context.h"
91 92
#endif

93 94
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
95
#include "paddle/fluid/platform/device/npu/npu_info.h"
96 97
#endif

Q
QI JUN 已提交
98 99 100
namespace paddle {
namespace platform {

101
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
102 103 104 105
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
106
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
107 108 109 110
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
111 112
#endif  // PADDLE_WITH_CUDA

113 114 115 116
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
117
  NPU = 3,
J
jianghaicheng 已提交
118
  IPU = 4,
F
fwenguang 已提交
119 120 121
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
122 123
};

124 125
DeviceType Place2DeviceType(const platform::Place& place);

126 127 128
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
129
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
130
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
131
constexpr DeviceType kMLU = DeviceType::MLU;
132

133
using DeviceContext = phi::DeviceContext;
Q
QI JUN 已提交
134

135
// using CPUDeviceContext = phi::CPUContext;
W
Wilber 已提交
136
// TODO(wilber): The place constructor is used in many places, it is more
137 138
// difficult to use CPUDeviceContext = phi::CPUContext directly.
class CPUDeviceContext : public phi::CPUContext {
Q
qijun 已提交
139
 public:
140
  CPUDeviceContext();
Q
qijun 已提交
141
  explicit CPUDeviceContext(CPUPlace place);
Q
QI JUN 已提交
142 143
};

Y
Yang Yu 已提交
144 145 146 147 148 149 150 151
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
152 153 154 155 156 157 158 159
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
160
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
161 162 163 164 165 166 167 168 169 170
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
171
#endif
J
jianghaicheng 已提交
172

F
fwenguang 已提交
173 174 175 176 177
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
178 179
#endif

180
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
181
namespace xpu = baidu::xpu::api;
182
class XPUDeviceContext : public phi::XPUContext {
183 184 185 186 187 188 189 190 191 192 193 194 195
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

196 197 198 199 200 201
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
202
  const Place& GetPlace() const override;
203
  aclrtContext context() const;
204

205 206 207 208 209 210
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

211 212 213 214 215 216 217
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

233 234 235
 private:
  NPUPlace place_;
  aclrtContext context_;
236 237 238 239

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
255 256 257 258 259 260 261

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
262
  const Place& GetPlace() const override;
263 264 265 266 267 268 269 270 271 272 273 274 275

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

276 277 278
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
279
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
280
class EigenCudaStreamDevice;
S
sneaxiy 已提交
281

282 283 284 285 286
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
287 288
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

304 305 306 307 308 309
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
310 311
  void SetStream(gpuStream_t stream);

312
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
313

314 315 316
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
317
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
318
#endif
319

320
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
321 322 323
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
324
#endif
G
Guo Sheng 已提交
325

326 327 328 329 330 331 332 333
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
334 335 336 337 338 339
#ifndef PADDLE_WITH_HIP
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

340
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
341 342
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
343
    if (cublas_tf32_tensor_core_handle_) {
W
Wilber 已提交
344
      cublas_tf32_tensor_core_handle_->Call(callback);
345
    } else {
W
Wilber 已提交
346
      cublas_handle_->Call(callback);
347
    }
348 349
  }

Z
zhangkaihuo 已提交
350 351
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
352
  inline void CusparseCall(
353
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
354
    cusparse_handle_->Call(callback);
Z
zhangkaihuo 已提交
355 356 357
  }
#endif

358 359 360 361 362
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
363 364
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
365
    if (cublas_tensor_core_handle_) {
W
Wilber 已提交
366
      cublas_tensor_core_handle_->Call(callback);
367
    } else {
W
Wilber 已提交
368
      cublas_handle_->Call(callback);
369 370 371 372 373 374
    }
  }

 private:
  void InitEigenContext();

375 376 377 378 379
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
380 381 382 383 384 385 386
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
387 388 389 390 391
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
392 393
    }
  }
394
#endif
395

Z
zhangkaihuo 已提交
396 397 398 399 400 401
#ifndef PADDLE_WITH_HIP
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

402 403
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
404 405
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
406
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
407 408
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
409 410
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
411 412 413 414
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
415 416
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
417
            << ", but MIOPEN version in your machine is "
418
            << local_miopen_version / 100 << "." << local_miopen_version % 100
419 420 421 422
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
423 424
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
425 426
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
427 428 429 430 431 432 433 434 435 436 437 438 439
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
440 441
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
442
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
443
#endif
444 445 446 447 448
    } else {
      cudnn_handle_ = nullptr;
    }
  }

449
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
450
  void InitCuSolverContext() {
451 452
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
453 454
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
455
#endif
G
Guo Sheng 已提交
456

457 458
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
459
#ifdef PADDLE_WITH_HIP
460
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
461
#else
462
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
463
#endif
464 465 466 467 468 469 470
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
471
    cublas_tf32_tensor_core_handle_.reset();
472 473
  }

Z
zhangkaihuo 已提交
474 475 476 477
#ifndef PADDLE_WITH_HIP
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

478
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
479 480
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
481
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
482 483 484
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
485
#endif
G
Guo Sheng 已提交
486

487 488 489 490
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
491 492 493
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
494
  cudnnHandle_t cudnn_handle_;
495
#endif
496 497
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
498
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
499
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
500
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
501
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
502
#endif
503 504 505
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

506
class CUDADeviceContext : public phi::GPUContext {
Q
QI JUN 已提交
507
 public:
D
dzhwinter 已提交
508
  explicit CUDADeviceContext(CUDAPlace place);
509
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
510

511
  /*! \brief  Wait for all operations completion in the stream. */
512
  void Wait() const override;
Q
QI JUN 已提交
513

514 515 516
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

517
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
518 519 520
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
521
      phi::GPUContext::CublasCall(callback);
W
Wilber 已提交
522 523
      return;
    }
524
    return context()->CublasCall(callback);
525 526
  }

Z
zhangkaihuo 已提交
527 528
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
529
  inline void CusparseCall(
530
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
531
    if (!thread_ctx_.count(this)) {
532
      phi::GPUContext::CusparseCall(callback);
W
Wilber 已提交
533 534 535
      return;
    }
    context()->CusparseCall(callback);
Z
zhangkaihuo 已提交
536 537 538
  }
#endif

539 540
  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
541 542 543
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
544
      phi::GPUContext::TensorCoreCublasCallIfAvailable(callback);
W
Wilber 已提交
545 546 547
      return;
    }
    context()->TensorCoreCublasCallIfAvailable(callback);
548
  }
S
sneaxiy 已提交
549

550 551 552 553
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
554
  cudnnHandle_t cudnn_handle() const;
555
#endif
556

557 558 559 560
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
561
  cublasHandle_t cublas_handle() const;
Z
zhangkaihuo 已提交
562
  cusparseHandle_t cusparse_handle() const;
563
#endif
564

W
Wilber 已提交
565 566 567 568
#ifndef PADDLE_WITH_HIP
  cusolverDnHandle_t cusolver_dn_handle() const;
#endif

S
sneaxiy 已提交
569 570 571 572 573 574 575
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
576
  phi::DnnWorkspaceHandle cudnn_workspace_handle() const;
S
sneaxiy 已提交
577

Q
init  
qijun 已提交
578
  /*! \brief  Return cuda stream in the device context. */
579
  gpuStream_t stream() const;
Q
QI JUN 已提交
580

W
Wilber 已提交
581
  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;
582

W
Wilber 已提交
583
  void AddStreamCallback(const std::function<void()>& callback) const;
584

W
Wilber 已提交
585
  void WaitStreamCallback() const;
586

587
  void ResetThreadContext(const stream::Priority& priority) {
588
    std::lock_guard<std::mutex> guard(ctx_mtx_);
W
Wilber 已提交
589
    thread_ctx_[this].reset(new CUDAContext(this->GetPlace(), priority));
590 591
  }

W
Wilber 已提交
592
  std::shared_ptr<CUDAContext> context() const;
S
sneaxiy 已提交
593

W
Wilber 已提交
594 595 596 597 598
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

W
Wilber 已提交
599 600 601 602
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  stream::CUDAStream* GetCudaStream() const;
  stream::CUDAStream* SetCudaStream(stream::CUDAStream*);
Q
QI JUN 已提交
603

W
Wilber 已提交
604
 private:
605 606 607 608 609 610
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
611

612 613
  mutable std::mutex cudnn_handle_mtx_;

W
Wilber 已提交
614 615 616
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  std::unique_ptr<stream::CUDAStream> cuda_stream_;
617
  std::unique_ptr<phi::DnnWorkspaceHandle> workspace_{nullptr};
Y
yuyang18 已提交
618

619
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
620
};
Q
qijun 已提交
621

622 623
class CudnnWorkspaceHandle {
 public:
624 625
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
626 627 628 629 630 631 632 633

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
634 635 636 637
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
638 639 640 641 642 643 644 645 646 647 648 649 650
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

651
  void ReallocWorkspace(size_t required_workspace_bytes);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
668
  std::mutex* mtx_;
669 670
};

Y
Yang Yu 已提交
671 672
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
673
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
674 675
};

C
chengduoZH 已提交
676
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
677 678 679 680 681
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
682
  const Place& GetPlace() const override;
C
chengduoZH 已提交
683

C
chengduoZH 已提交
684 685 686 687 688 689 690 691 692 693 694
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
695
#endif
Q
qijun 已提交
696

T
tensor-tang 已提交
697
#ifdef PADDLE_WITH_MKLDNN
698 699 700 701 702 703

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
704
    bool said_once = false;
705 706 707 708 709 710 711 712 713 714 715
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
716
    // MKL-DNN stream used for execution of primitives (per-thread)
717 718
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
719 720
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
721
    void* exec_ptr_ = nullptr;
722 723

    Body();
724
    ~Body();
725 726 727 728 729 730
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
731
    void log_lib_version(void);
732 733
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
734 735 736 737
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
738 739
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
755

T
tensor-tang 已提交
756 757
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
758 759 760 761 762 763 764 765 766 767
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
768
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
769 770 771
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
772
  using ShapeBlob = umap_key_string_t<KeyBlob>;
773 774
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

775 776 777 778
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
779
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
780 781 782
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
783

T
tensor-tang 已提交
784 785 786
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
787
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
788

789
  // Register object to currently used executor's map
790 791
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
792

793
  // Remove all entries from the blob map
794
  void ResetBlobMap(void* ptr);
795 796 797

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
798

799 800 801
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

802 803
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
804

805
  // Calculate number of oneDNN objects cached
806
  unsigned int GetCachedObjectsNumber(void) const;
807

808 809
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
810

811 812 813 814
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
815
 private:
816
  std::shared_ptr<BlobMap> p_blobmap_;
817 818
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
819
  std::shared_ptr<ExecShape> p_exec_items_;
820
  std::shared_ptr<std::mutex> p_mutex_;
821
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
822 823 824
};
#endif

825
#ifdef PADDLE_WITH_CUSTOM_DEVICE
826
class CustomDeviceContext : public phi::CustomContext {
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
 public:
  explicit CustomDeviceContext(CustomPlace place);
  virtual ~CustomDeviceContext();

  Eigen::DefaultDevice* eigen_device() const { return nullptr; }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

 private:
  std::shared_ptr<platform::stream::Stream> stream_;
};
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = CustomDeviceContext;
};
#else
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = DeviceContext;
};
#endif

D
dzhwinter 已提交
854 855 856 857 858
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
859
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
860 861 862
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
863 864 865 866
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
867
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
868 869 870 871 872 873
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

874 875
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
876
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
877
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
878

Y
Yang Yu 已提交
879 880 881 882 883 884 885
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

886 887
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
888 889
 private:
  static DeviceContextPool* pool;
890 891
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
892 893 894
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
895 896
}  // namespace platform
}  // namespace paddle