device_context.h 27.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#include "paddle/fluid/platform/dynload/cusparse.h"
28
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
29
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
30
#endif
31
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
32
#endif
D
dzhwinter 已提交
33

34
#ifdef PADDLE_WITH_HIP
35
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
36 37 38 39 40
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
42 43
#endif

44 45 46 47
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
48
#ifdef PADDLE_WITH_MKLDNN
49
#include "dnnl.hpp"
50
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
51 52
#endif

53
#include <map>
W
wanghuancoder 已提交
54

55
#include "glog/logging.h"
Y
Yi Wang 已提交
56 57
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
58
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
59
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
60
#endif
61
#ifdef PADDLE_WITH_ASCEND_CL
62 63
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
64
#endif
J
jianghaicheng 已提交
65 66 67
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/device.h"
#endif
Q
qijun 已提交
68
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
69

W
wanghuancoder 已提交
70 71 72 73 74
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

75
#ifdef PADDLE_WITH_XPU
76 77
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
78 79
#endif

80 81
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
82
#include "paddle/fluid/platform/device/npu/npu_info.h"
83 84
#endif

Q
QI JUN 已提交
85 86 87
namespace paddle {
namespace platform {

88
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
89 90 91 92
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
93
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
94 95 96 97
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
98 99
#endif  // PADDLE_WITH_CUDA

100 101 102 103
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
104
  NPU = 3,
J
jianghaicheng 已提交
105
  IPU = 4,
F
fwenguang 已提交
106 107 108
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
109 110
};

111 112
DeviceType Place2DeviceType(const platform::Place& place);

113 114 115
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
116
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
117
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
118
constexpr DeviceType kMLU = DeviceType::MLU;
119

Q
QI JUN 已提交
120 121
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
122
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
123
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
124

125
  virtual void Wait() const {}
Q
QI JUN 已提交
126 127
};

Q
qijun 已提交
128 129
class CPUDeviceContext : public DeviceContext {
 public:
130
  CPUDeviceContext();
Q
qijun 已提交
131
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
132

133
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
134

L
liaogang 已提交
135
  Place GetPlace() const override;
Y
Yu Yang 已提交
136

Q
qijun 已提交
137
 private:
D
dzhwinter 已提交
138
  CPUPlace place_;
Q
qijun 已提交
139
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
140 141
};

Y
Yang Yu 已提交
142 143 144 145 146 147 148 149
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;
  int DeviceId() const { return device_.getId(); }

 private:
  IPUPlace place_;
  platform::ipu::Device device_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
171
#endif
J
jianghaicheng 已提交
172

F
fwenguang 已提交
173 174 175 176 177
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
178 179
#endif

180
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
181
namespace xpu = baidu::xpu::api;
182 183 184 185 186 187
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
188
  XPUVersion xpu_version() const { return xpu_version_; }
189 190 191 192 193 194
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

195
#ifdef PADDLE_WITH_XPU_BKCL
196
  /*! \brief  Return bkcl context. */
197 198 199 200 201 202
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

203 204
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
205
  XPUVersion xpu_version_;
206
  xpu::Context* context_;
207 208 209
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
210 211 212 213 214 215 216 217 218 219 220 221 222

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

223 224 225 226 227 228 229 230
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
231

232 233 234 235 236 237
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

238 239 240 241 242 243 244
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

260 261 262
 private:
  NPUPlace place_;
  aclrtContext context_;
263 264 265 266

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

303 304 305
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
306
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
307
class EigenCudaStreamDevice;
S
sneaxiy 已提交
308

309 310 311 312 313
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
314 315
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

331 332 333 334 335 336
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
337 338
  void SetStream(gpuStream_t stream);

339
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
340

341 342 343
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
344
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
345
#endif
346

347
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
348 349 350
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
351
#endif
G
Guo Sheng 已提交
352

353 354 355 356 357 358 359 360 361 362 363
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
364 365 366 367 368
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

388 389 390 391 392
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
393 394 395 396 397 398 399
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
400 401 402 403 404
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
405 406
    }
  }
407
#endif
408 409 410

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
411 412
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
413
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
414 415
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
416 417
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
418 419 420 421
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
422 423
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
424
            << ", but MIOPEN version in your machine is "
425
            << local_miopen_version / 100 << "." << local_miopen_version % 100
426 427 428 429
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
430 431
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
432 433
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
434 435 436 437 438 439 440 441 442 443 444 445 446
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
447 448
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
449
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
450
#endif
451 452 453 454 455
    } else {
      cudnn_handle_ = nullptr;
    }
  }

456
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
457
  void InitCuSolverContext() {
458 459
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
460 461
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
462
#endif
G
Guo Sheng 已提交
463

464 465
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
466
#ifdef PADDLE_WITH_HIP
467
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
468
#else
469
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
470
#endif
471 472 473 474 475 476 477
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
478
    cublas_tf32_tensor_core_handle_.reset();
479 480
  }

481
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
482 483
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
484
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
485 486 487
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
488
#endif
G
Guo Sheng 已提交
489

490 491 492 493
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
494 495 496
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
497
  cudnnHandle_t cudnn_handle_;
498
#endif
499 500
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
501
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
502
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
503
  cusolverDnHandle_t cusolver_dn_handle_;
504
#endif
505 506 507
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

508
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
509
 public:
D
dzhwinter 已提交
510
  explicit CUDADeviceContext(CUDAPlace place);
511
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
512

513
  /*! \brief  Wait for all operations completion in the stream. */
514
  void Wait() const override;
Q
QI JUN 已提交
515

516
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
517
  Place GetPlace() const override;
518

K
Kexin Zhao 已提交
519
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
520 521
  int GetComputeCapability() const;

522 523 524
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

525 526 527 528 529 530
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

531 532 533
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

534 535 536
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

537 538 539
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
540
    return context()->CublasCall(callback);
541 542 543 544 545 546 547 548 549
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
550
    return context()->TensorCoreCublasCallIfAvailable(callback);
551
  }
S
sneaxiy 已提交
552

553 554 555 556
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
557
  cudnnHandle_t cudnn_handle() const;
558
#endif
559

560 561 562 563
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
564
  cublasHandle_t cublas_handle() const;
565
#endif
566

S
sneaxiy 已提交
567 568 569 570 571 572 573 574 575
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

576
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
577
  cusolverDnHandle_t cusolver_dn_handle() const;
578
#endif
G
Guo Sheng 已提交
579

Q
init  
qijun 已提交
580
  /*! \brief  Return cuda stream in the device context. */
581
  gpuStream_t stream() const;
Q
QI JUN 已提交
582

583
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
584 585 586 587 588
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
589
#endif
Q
qingqing01 已提交
590

Y
Yu Yang 已提交
591
  template <typename Callback>
592
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
593
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
594 595
  }

S
sneaxiy 已提交
596 597
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
598 599 600 601 602
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
603 604
  }

605
  void ResetDefaultContext(const stream::Priority& priority) {
606 607 608
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

609
  void ResetThreadContext(const stream::Priority& priority) {
610 611 612 613 614 615 616 617 618 619
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
620

W
Wilber 已提交
621 622 623 624 625
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

Q
QI JUN 已提交
626
 private:
D
dzhwinter 已提交
627
  CUDAPlace place_;
628
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
629

630 631 632 633 634 635
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
636

637 638
  mutable std::mutex cudnn_handle_mtx_;

639
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
640 641 642 643 644 645
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
646
#endif
Q
qingqing01 已提交
647

C
chengduo 已提交
648 649 650 651 652
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
653
  int max_threads_per_block_;
654
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
655

656
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
657
};
Q
qijun 已提交
658

659 660
class CudnnWorkspaceHandle {
 public:
661 662
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
663 664 665 666 667 668 669 670

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
671 672 673 674
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
675 676 677 678 679 680 681 682 683 684 685 686 687
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

688
  void ReallocWorkspace(size_t required_workspace_bytes);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
705
  std::mutex* mtx_;
706 707
};

Y
Yang Yu 已提交
708 709
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
710
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
711 712
};

C
chengduoZH 已提交
713
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
714 715 716 717 718 719
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
720

C
chengduoZH 已提交
721 722 723 724 725 726 727 728 729 730 731
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
732
#endif
Q
qijun 已提交
733

T
tensor-tang 已提交
734
#ifdef PADDLE_WITH_MKLDNN
735 736 737 738 739 740

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
741
    bool said_once = false;
742 743 744 745 746 747 748 749 750 751 752
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
753
    // MKL-DNN stream used for execution of primitives (per-thread)
754 755
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
756 757
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
758
    void* exec_ptr_ = nullptr;
759 760

    Body();
761
    ~Body();
762 763 764 765 766 767
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
768
    void log_lib_version(void);
769 770
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
771 772 773 774
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
775 776
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
792

T
tensor-tang 已提交
793 794
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
795 796 797 798 799 800 801 802 803 804
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
805
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
806 807 808
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
809
  using ShapeBlob = umap_key_string_t<KeyBlob>;
810 811
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

812 813 814 815
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
816
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
817 818 819
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
820

T
tensor-tang 已提交
821 822 823
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
824
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
825

826
  // Register object to currently used executor's map
827 828
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
829

830
  // Remove all entries from the blob map
831
  void ResetBlobMap(void* ptr);
832 833 834

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
835

836 837 838
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

839 840
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
841

842
  // Calculate number of oneDNN objects cached
843
  unsigned int GetCachedObjectsNumber(void) const;
844

845 846
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
847

848 849 850 851
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
852
 private:
853
  std::shared_ptr<BlobMap> p_blobmap_;
854 855
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
856
  std::shared_ptr<ExecShape> p_exec_items_;
857
  std::shared_ptr<std::mutex> p_mutex_;
858
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
859 860 861
};
#endif

D
dzhwinter 已提交
862 863 864 865 866
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
867
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
868 869 870
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
871 872 873 874
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
875
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
876 877 878 879 880 881
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

882 883
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
884
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
885
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
886

Y
Yang Yu 已提交
887 888 889 890 891 892 893
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

894 895
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
896 897
 private:
  static DeviceContextPool* pool;
898 899
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
900 901 902
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
903 904
}  // namespace platform
}  // namespace paddle