manipulation.py 172.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15
from __future__ import print_function
16
from collections import Counter
W
Wilber 已提交
17

Z
zhiboniu 已提交
18
from ..static import Variable, device_guard
19 20 21
from ..framework import core, in_dygraph_mode
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check, _non_static_mode
from ..framework import LayerHelper
Z
zhiboniu 已提交
22
from ..framework import OpProtoHolder, convert_np_dtype_to_dtype_, dygraph_only
W
Wilber 已提交
23
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
25
import numpy as np
26
# TODO: define functions to manipulate a tensor
27
from ..fluid.layers.nn import _elementwise_op_in_dygraph
28
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
29
import paddle
30
from paddle import _C_ops, _legacy_C_ops
31 32 33 34 35
from ..common_ops_import import dygraph_utils, fill_constant, _varbase_creator
import warnings
from .creation import zeros
from .creation import _complex_to_real_dtype
from .creation import _real_to_complex_dtype
36

37 38
__all__ = []

W
Wilber 已提交
39

40 41 42 43 44 45 46 47
def cast(x, dtype):
    """

    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
48
        x (Tensor): An input N-D Tensor with data type bool, float16,
49
            float32, float64, int32, int64, uint8.
50
        dtype (np.dtype|str): Data type of the output:
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
        Tensor: A Tensor with the same shape as input's.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
67
        return _C_ops.cast(x, dtype)
68 69 70 71

    if _non_static_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
72
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
73 74 75 76 77 78 79 80 81 82 83 84 85 86
        return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
    ], 'cast')
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
87 88 89 90 91 92 93
    helper.append_op(type='cast',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={
                         'in_dtype': x.dtype,
                         'out_dtype': out.dtype
                     })
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
    
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        Tensor:  A ``Tensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Tensor.
        TypeError: The type of ``ends`` must be list, tuple or Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
            # sliced_1 is input[0:3, 0:2, 2:4].

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
            # sliced_2 is input[0:3, 0:2, 2:4].
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
                    "Input axes should not be an empty list/tuple.")
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
                "Input axes must be a python list or tuple, but reveived {}".
                format(type(axes)))

        infer_flags = list(1 for i in range(len(axes)))

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
201 202
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
203 204 205 206 207 208 209 210
            infer_flags = list(-1 for i in range(len(axes)))

        if isinstance(ends, (list, tuple)):
            ends = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in ends
            ]
        elif isinstance(ends, tmp_tensor_type):
211
            tensor_t = ends.numpy()
212
            ends = [ele for ele in tensor_t]
213
            infer_flags = list(-1 for i in range(len(axes)))
214

215
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
                        "Input axes should not be an empty list/tuple.")
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
235 236
                    "Input axes must be a python list or tuple, but reveived {}"
                    .format(type(axes)))
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
                    if isinstance(item, tmp_tensor_type) else item
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

266 267 268
            return _legacy_C_ops.slice(input, starts_tensor, ends_tensor, None,
                                       None, 'axes', axes, 'infer_flags',
                                       infer_flags, *attrs)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

    helper = LayerHelper('slice', **locals())

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        else:
            attrs['starts'] = starts

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        else:
            attrs['ends'] = ends

    # infer_flags
    attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
323 324 325 326
    helper.append_op(type='slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    return out


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
382
        return _C_ops.transpose(x, perm)
383 384
    else:
        if _in_legacy_dygraph():
385
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
411 412 413 414 415 416 417
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
    return out


def unstack(x, axis=0, num=None):
    """
    :alias_main: paddle.unstack
	:alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack
	:old_api: paddle.fluid.layers.unstack

    **UnStack Layer**

    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
        list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
455 456 457 458 459
    if in_dygraph_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
460
        return _C_ops.unstack(x, axis, num)
461

462 463 464 465 466
    if _non_static_mode():
        if num == None:
            num = x.shape[axis]
        if num == 0:
            return []
467
        return _legacy_C_ops.unstack(x, num, 'axis', int(axis), 'num', num)
468 469 470 471 472 473 474 475 476 477 478 479

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in range(num):
        outs.append(helper.create_variable_for_type_inference(x.dtype))

480 481 482 483 484 485 486
    helper.append_op(type='unstack',
                     inputs={'X': [x]},
                     outputs={'Y': outs},
                     attrs={
                         'axis': axis,
                         'num': num
                     })
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    return outs


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
   
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
537 538
        return _C_ops.shard_index(input, index_num, nshards, shard_id,
                                  ignore_value)
539 540 541 542 543 544 545 546 547

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
548 549 550 551 552 553 554 555 556 557
    helper.append_op(type=op_type,
                     inputs={'X': [input]},
                     outputs={'Out': out},
                     attrs={
                         'index_num': index_num,
                         'nshards': nshards,
                         'shard_id': shard_id,
                         'ignore_value': ignore_value
                     },
                     stop_gradient=True)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
601
        shape (list|tuple|Tensor, optional): The output shape is specified
602 603 604 605 606 607 608 609 610 611 612
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
613
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

    Returns:
        Tensor: The cropped Tensor has same data type with `x`.

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
647

648 649 650 651 652 653 654 655 656 657
    helper = LayerHelper('crop_tensor', **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')

    if offsets is None:
        offsets = [0] * len(x.shape)

658
    if in_dygraph_mode():
659
        return _C_ops.crop_tensor(x, shape, offsets)
660

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
    elif utils._contain_var(offsets):
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
    elif utils._contain_var(shape):
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
728 729 730 731 732
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
733 734 735 736 737 738 739 740 741
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

742 743 744 745
    helper.append_op(type='crop_tensor',
                     inputs=ipts,
                     outputs={'Out': out},
                     attrs=None if len(attrs) == 0 else attrs)
746 747 748
    return out


749 750 751 752 753 754 755 756 757
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
758 759
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

    Returns:
        x(Tensor): Tensor x filled with value inplace

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
            "The type of 'value'  must be int or float, but received %s." %
            (type(value)))
779
    if in_dygraph_mode():
780
        return _C_ops.fill_(x, value)
781
    else:
782 783
        return _legacy_C_ops.fill_any_(x, "value_float", float(value),
                                       "value_int", int(value))
784 785 786 787 788 789 790 791 792 793 794


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
795
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
796 797

    Returns:
798
        x (Tensor): Tensor x filled with zero inplace
799 800 801 802 803 804 805 806 807 808 809 810

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
811
    if in_dygraph_mode():
812
        return _C_ops.fill_(x, 0.)
813
    else:
814 815
        return _legacy_C_ops.fill_any_(x, "value_float", 0., "value_int",
                                       int(0))
816 817


818 819 820
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
821 822 823
    Note:
        This API is ONLY available in Dygraph mode.
	
824
    This function fill the value into the x Tensor's diagonal inplace.
825
    
826 827 828 829 830 831
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
832
    
833 834
    Returns:
        Tensor: Tensor with diagonal filled with value.
835

836 837 838 839 840 841 842
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    helper = LayerHelper("fill_diagonal_", **locals())
    check_type(x, 'X', (Variable), 'fill_diagonal_')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_diagonal_')
    check_type(value, 'value', (bool, int, float), 'fill_diagonal_')
    check_type(wrap, 'wrap', (bool), 'fill_diagonal_')

    inshape = x.shape
    inshapeset = set(inshape)
    assert len(inshape) >= 2, ('Tensor dims should >= 2 in fill_diagonal_ API')
    if len(inshape) > 2:
        assert len(inshapeset) == 1, (
            'Tensor dims should be equal while input dims > 2 in fill_diagonal_ API'
        )
Z
zhiboniu 已提交
860 861
    if in_dygraph_mode():
        if len(inshape) == 2:
862 863
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
864

865
    if len(inshape) == 2:
866 867 868 869
        return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                            'wrap', wrap)
    return _legacy_C_ops.fill_diagonal_(x, 'value', value, 'offset', offset,
                                        'wrap', True)
870 871


872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
    assert dim1 < len(inshape) and dim1 >= -len(inshape), (
        'dim1 should between [-rank,rank) in fill_diagonal_tensor_')
    assert dim2 < len(inshape) and dim2 >= -len(inshape), (
        'dim2 should between [-rank,rank) in fill_diagonal_tensor_')
    assert len(inshape) >= 2, (
        'Tensor dims should >= 2 in fill_diagonal_tensor_')
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
887 888
    diaglen = min(min(inshape[dim1], inshape[dim1] + offset),
                  min(inshape[dim2], inshape[dim2] - offset))
889
    predshape.append(diaglen)
890 891
    assert tuple(predshape) == tuple(
        y.shape), ("the y shape should be {}".format(predshape))
892 893 894 895
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
Z
zhiboniu 已提交
896
        if in_dygraph_mode():
897
            return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
898
        else:
899 900 901
            return _legacy_C_ops.fill_diagonal_tensor_(x, y, 'offset', offset,
                                                       'dim1', dim1, 'dim2',
                                                       dim2)
Z
zhiboniu 已提交
902
    if in_dygraph_mode():
903
        return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
Z
zhiboniu 已提交
904
    else:
905 906
        return _legacy_C_ops.fill_diagonal_tensor(x, y, 'offset', offset,
                                                  'dim1', dim1, 'dim2', dim2)
907 908 909 910


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
911 912
    Note:
        This API is ONLY available in Dygraph mode.
913 914 915 916

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
917 918 919 920 921 922
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
938 939 940 941 942 943
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=True)
944 945 946 947 948 949 950


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
951 952 953 954 955 956
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

    Returns:
        Tensor: Tensor with diagonal filled with y.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
972 973 974 975 976 977
    return _fill_diagonal_tensor_impl(x,
                                      y,
                                      offset=offset,
                                      dim1=dim1,
                                      dim2=dim2,
                                      inplace=False)
978 979


Z
zhiboniu 已提交
980 981 982
@dygraph_only
def tolist(x):
    """
983 984
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
985 986 987 988

    This function translate the paddle.Tensor to python list.

    Args:
989
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    Returns:
        list: A list that contain the same value of current Tensor.


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
    return x.numpy().tolist()


1011 1012 1013
def concat(x, axis=0, name=None):
    """

1014
    Concatenates the input along the axis.
1015 1016

    Args:
1017
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1018
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1019
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1020 1021 1022
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1023
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1024 1025

    Returns:
1026
        Tensor: A Tensor with the same data type as ``x``.
1027 1028 1029 1030 1031 1032

    Examples:
        .. code-block:: python
            
            import paddle
            
1033 1034 1035 1036 1037 1038
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1039 1040 1041
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1042 1043 1044
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1045 1046 1047 1048 1049 1050 1051 1052 1053
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1054 1055 1056 1057 1058 1059 1060
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1061
        return _C_ops.concat(input, axis)
1062 1063 1064 1065 1066 1067 1068 1069

    if _in_legacy_dygraph():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        out = _varbase_creator()
1070
        _legacy_C_ops.concat(input, out, 'axis', axis)
1071 1072 1073 1074 1075
        return out

    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
1076 1077 1078 1079
            check_variable_and_dtype(x, 'input[' + str(id) + ']', [
                'bool', 'float16', 'float32', 'float64', 'int32', 'int64',
                'int8', 'unit8'
            ], 'concat')
1080 1081
            if x.dtype != input[0].dtype:
                raise TypeError(
1082 1083
                    "All the Tensors in the input must have the same data type."
                )
1084 1085 1086 1087 1088 1089 1090
    else:
        input = [input]
    check_type(axis, 'axis', (int, Variable), 'concat')

    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
1091 1092
            "The data type of axis must be int32 or int64 when axis is a Tensor"
        )
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

    helper = LayerHelper('concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                "number of the elements must be 1, but received %s." % len(input)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': input[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': False
                         })
1115 1116 1117 1118 1119
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
1120 1121 1122
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis
1123

1124 1125 1126 1127
        helper.append_op(type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
1128
    return out
1129 1130


1131 1132 1133 1134 1135 1136 1137 1138
def broadcast_tensors(input, name=None):
    """
    This OP broadcast a list of tensors following broadcast semantics

    .. note::
        If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
1139
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1140 1141
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1142
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

    Returns:
        list(Tensor): The list of broadcasted tensors following the same order as ``input``.

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1159
    if paddle.framework.in_dygraph_mode():
1160
        return _C_ops.broadcast_tensors(input)
1161
    if paddle.framework._non_static_mode():
1162
        return _legacy_C_ops.broadcast_tensors(input, num_inputs)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

    check_type(input, 'input', (list, tuple), 'broadcast_tensors')
    if num_inputs < 1:
        raise TypeError(
            "At least 1 tensor is needed to perform broadcast_tensors")

    # Check input types
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'broadcast_tensors')
        if x.dtype != input[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    # Check bcast semantics
    output_shape_r_last_tensor_index = []
    output_shape_r = []

    # Use while loop due to weird behaviour of "range()"
    j = 0
    while j < len(input):
        tensor = input[j]
        shape = list(reversed(tensor.shape))

        i = 0
        while i < len(shape):
            if len(output_shape_r) <= i:
                output_shape_r.append(shape[i])
                output_shape_r_last_tensor_index.append(j)
            else:
1195 1196
                invalid = (output_shape_r[i] != shape[i]
                           and output_shape_r[i] != 1 and shape[i] != 1)
1197 1198 1199 1200
                if invalid:
                    last_index = output_shape_r_last_tensor_index[i]
                    raise TypeError(
                        "Input tensors to broadcast_tensors does not follow bcast semantics"
1201
                        "Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
                    )
                if output_shape_r[i] <= shape[i]:
                    output_shape_r[i] = shape[i]
                    output_shape_r_last_tensor_index[i] = j
            i += 1  # while i < len(shape)
        j += 1  # while j < len(input)

    helper = LayerHelper('broadcast_tensors', **locals())
    i = 0
    out = []
    while i < num_inputs:
        out.append(
1214 1215
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()))
1216 1217 1218
        i += 1

    inputs = {'X': input}
1219 1220 1221 1222
    helper.append_op(type='broadcast_tensors',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs={})
1223 1224 1225 1226

    return out


Y
yaoxuefeng 已提交
1227
def flip(x, axis, name=None):
W
Wilber 已提交
1228
    """
Y
yaoxuefeng 已提交
1229
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1230 1231

    Args:
Y
yaoxuefeng 已提交
1232
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1233
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1234
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1235
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1236 1237

    Returns:
Y
yaoxuefeng 已提交
1238
        Tensor: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1239 1240 1241 1242 1243 1244

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
1245 1246 1247 1248

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
1249
          img = paddle.to_tensor(x)
R
Roc 已提交
1250 1251
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1252

R
Roc 已提交
1253 1254
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1255
    """
R
Roc 已提交
1256 1257
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1258 1259

    if in_dygraph_mode():
1260
        return _C_ops.flip(x, axis)
H
hong 已提交
1261

Z
zhiboniu 已提交
1262
    if paddle.in_dynamic_mode():
1263
        return _legacy_C_ops.flip(x, "axis", axis)
R
Roc 已提交
1264

W
Wilber 已提交
1265
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
1266 1267
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
1268 1269 1270
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
1271
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
1272 1273 1274 1275 1276
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

1277 1278 1279 1280
    helper.append_op(type="flip",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={"axis": axis})
W
Wilber 已提交
1281
    return out
1282 1283


Z
zmxdream 已提交
1284 1285
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1286
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1287 1288 1289

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1290
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1291 1292
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
Z
zmxdream 已提交
1306 1307 1308 1309
          print(data) 
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1310
          y = paddle.rot90(data, 1, [0, 1])
Z
zmxdream 已提交
1311 1312 1313 1314
          print(y) 
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1315
          y= paddle.rot90(data, -1, [0, 1])
Z
zmxdream 已提交
1316 1317 1318 1319
          print(y) 
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1320 1321
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
Z
zmxdream 已提交
1322 1323 1324 1325 1326 1327
          print(data2) 
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1328
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1329 1330 1331 1332 1333
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'rot90')
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1347 1348 1349
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
                total_rot_dims))
Z
zmxdream 已提交
1350
    if input_total_dims < 2:
1351 1352 1353
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
                input_total_dims))
Z
zmxdream 已提交
1354 1355 1356

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1357 1358
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}"
            .format(axes[0], axes[1]))
Z
zmxdream 已提交
1359 1360

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1361 1362
        raise ValueError("Rotation axis0 out of range, axis0 = {}".format(
            axes[0]))
Z
zmxdream 已提交
1363
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1364 1365
        raise ValueError("Rotation axis1 out of range, axis1 = {}".format(
            axes[1]))
Z
zmxdream 已提交
1366

Z
zmxdream 已提交
1367
    k %= 4
Z
zmxdream 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1383
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1384
    r"""
1385 1386
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1387 1388 1389
    Note:
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode. 
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
1420
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
1421
                      float64, int8, int32, int64, uint8.
1422 1423
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1424
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1425 1426

    Returns:
Y
yaoxuefeng 已提交
1427
        Tensor: A tensor with the contents of the input tensor, with input \
1428 1429 1430 1431
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
1432
        ValueError: If x is not a Tensor.
1433 1434 1435 1436 1437 1438 1439 1440 1441
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1442

Y
yaoxuefeng 已提交
1443 1444
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1445

1446 1447
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1448 1449 1450 1451

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1452 1453
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1454
        raise ValueError("The input x should be a Tensor")
1455

Z
zhiboniu 已提交
1456
    if not paddle.in_dynamic_mode():
1457
        check_variable_and_dtype(
1458 1459
            x, 'x',
            ['float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8'],
1460
            'flatten')
1461 1462

    x_dim = len(x.shape)
1463 1464
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1465 1466
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1467 1468
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1469 1470 1471 1472 1473 1474 1475 1476 1477
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1478
    if in_dygraph_mode():
1479
        return _C_ops.flatten(x, start_axis, stop_axis)
1480 1481

    if _in_legacy_dygraph():
1482 1483
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1484 1485
        return dy_out

1486
    helper = LayerHelper('flatten', **locals())
1487 1488
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
    helper.append_op(type='flatten_contiguous_range',
                     inputs={"X": x},
                     outputs={
                         'Out': out,
                         'XShape': x_shape
                     },
                     attrs={
                         "start_axis": start_axis,
                         "stop_axis": stop_axis
                     })
1499 1500 1501
    return out


1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1512 1513
    if not (isinstance(start_axis,
                       int)) or (start_axis > x_dim - 1) or start_axis < -x_dim:
1514 1515
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
1516 1517
    if not (isinstance(stop_axis,
                       int)) or (stop_axis > x_dim - 1) or stop_axis < -x_dim:
1518 1519 1520 1521 1522 1523 1524 1525 1526
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1527
    if in_dygraph_mode():
1528
        return _C_ops.flatten_(x, start_axis, stop_axis)
1529 1530

    if _in_legacy_dygraph():
1531 1532
        dy_out, _ = _legacy_C_ops.flatten_contiguous_range_(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
1533
        return dy_out
1534 1535


Y
yaoxuefeng 已提交
1536
def roll(x, shifts, axis=None, name=None):
1537
    """
Y
yaoxuefeng 已提交
1538 1539 1540
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
1541 1542 1543
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1544
        x (Tensor): The x tensor as input.
1545
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1546
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1547
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1548 1549 1550
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1551 1552

    Returns:
Y
yaoxuefeng 已提交
1553
        Tensor: A Tensor with same data type as `x`.
1554 1555 1556

    Examples:
        .. code-block:: python
C
Chen Long 已提交
1557
            
1558 1559
            import paddle

1560 1561 1562
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1563
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1564
            print(out_z1)
Y
yaoxuefeng 已提交
1565 1566 1567 1568
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1569
            print(out_z2)
Y
yaoxuefeng 已提交
1570 1571 1572
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1573 1574 1575 1576 1577
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1578
    """
Y
yaoxuefeng 已提交
1579
    origin_shape = x.shape
1580 1581
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1582 1583 1584 1585
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1586
    if axis is not None:
Y
yaoxuefeng 已提交
1587 1588 1589
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1590 1591
                    "axis is out of range, it should be in range [{}, {}), but received {}"
                    .format(-len_origin_shape, len_origin_shape, axis))
S
sunli 已提交
1592 1593 1594
    else:
        axis = []

F
From00 已提交
1595
    if in_dygraph_mode():
1596
        return _C_ops.roll(x, shifts, axis)
F
From00 已提交
1597 1598

    if _in_legacy_dygraph():
1599
        return _legacy_C_ops.roll(x, 'axis', axis, 'shifts', shifts)
1600

1601 1602
    helper = LayerHelper("roll", **locals())
    check_type(axis, 'axis', (list, tuple), 'roll')
1603

Y
yaoxuefeng 已提交
1604
    out = helper.create_variable_for_type_inference(x.dtype)
1605

1606
    if isinstance(shifts, Variable):
1607 1608 1609 1610 1611 1612 1613
        helper.append_op(type='roll',
                         inputs={
                             'X': x,
                             "ShiftsTensor": shifts
                         },
                         outputs={'Out': out},
                         attrs={'axis': axis})
1614 1615
    else:
        check_type(shifts, 'shifts', (list, tuple), 'roll')
1616 1617 1618 1619 1620 1621 1622
        helper.append_op(type='roll',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'axis': axis,
                             'shifts': shifts
                         })
1623
    return out
1624 1625


L
Leo Chen 已提交
1626
def stack(x, axis=0, name=None):
1627
    """
1628
    Stacks all the input tensors ``x`` along ``axis`` dimemsion. 
L
Leo Chen 已提交
1629 1630 1631 1632 1633 1634
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1670
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1671 1672 1673 1674 1675 1676 1677 1678

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1679
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1680
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1681 1682 1683
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1684
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Leo Chen 已提交
1685
        
1686
    Returns:
L
Leo Chen 已提交
1687
        Tensor: The stacked tensor with same data type as input.
1688 1689 1690

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
1691

1692
            import paddle
1693
            
L
Leo Chen 已提交
1694 1695 1696
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Liyulingyue 已提交
1697
	    
L
Leo Chen 已提交
1698 1699
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1700
            print(out)
L
Leo Chen 已提交
1701 1702 1703
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
L
Liyulingyue 已提交
1704 1705 1706 1707 1708 1709 1710
	    
	    out = paddle.stack([x1, x2, x3], axis=-2)
	    print(out.shape)  # [1, 3, 2]
	    print(out)
	    # [[[1., 2.],
	    #   [3., 4.],
	    #   [5., 6.]]]
L
Leo Chen 已提交
1711
    """
1712 1713 1714
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1715
        return _C_ops.stack(x, axis)
1716 1717

    if _in_legacy_dygraph():
1718
        return _legacy_C_ops.stack(x, 'axis', axis)
1719 1720 1721 1722 1723 1724 1725 1726

    if not isinstance(x, list) and not isinstance(x, tuple):
        # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
        # In that case, Variable is array of tensors indeed.
        if isinstance(x, Variable) and x.desc.type(
        ) == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            x = [x]
        else:
1727 1728 1729 1730
            raise TypeError(
                "The type of '%s' in %s must be %s, but received %s" %
                ('x', 'stack', 'list[Tensor], tuple[Tensor] or TensorArray',
                 type(x)))
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

    helper = LayerHelper('stack', **locals())

    out = helper.create_variable_for_type_inference(x[0].dtype)
    if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")

        for i in x:
            check_variable_and_dtype(i, 'x', \
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'stack')

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        helper.append_op(type='tensor_array_to_tensor',
                         inputs={'X': x[0]},
                         outputs={
                             'Out': [out],
                             'OutIndex': [out_index]
                         },
                         attrs={
                             'axis': axis,
                             'use_stack': True
                         })
1754
    else:
1755 1756 1757 1758
        helper.append_op(type='stack',
                         inputs={'X': x},
                         outputs={'Y': out},
                         attrs={'axis': axis})
1759 1760

    return out
1761 1762


1763
def split(x, num_or_sections, axis=0, name=None):
1764 1765
    """
    Split the input tensor into multiple sub-Tensors.
1766
    
1767
    Args:
1768
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1779
    Returns:
1780
        list(Tensor): The list of segmented Tensors.
1781
    
1782 1783
    Example:
        .. code-block:: python
1784
            
1785 1786
            import paddle
            
L
Leo Chen 已提交
1787 1788
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1789

L
Leo Chen 已提交
1790 1791 1792 1793
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1794 1795

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1796 1797 1798
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1799 1800

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1801 1802 1803
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1804
            
L
Leo Chen 已提交
1805
            # axis is negative, the real axis is (rank(x) + axis)=1
1806
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1807 1808 1809
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1810
    """
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
    input = x
    dim = axis
    if _non_static_mode():
        num = None
        attrs = ()

        if isinstance(dim, Variable):
            dim = dim.numpy()
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim
        attrs += ('axis', dim)

        if isinstance(num_or_sections, int):
            num = num_or_sections
            attrs += ('num', num_or_sections)
        elif isinstance(num_or_sections, (list, tuple)):
            num = len(num_or_sections)
            if utils._contain_var(num_or_sections):
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1832 1833
                        num_or_sections[index] = num_or_sections[index].numpy(
                        )[0]
1834 1835 1836 1837 1838 1839 1840
                attrs += ('sections', list(num_or_sections))
            else:
                attrs += ('sections', list(num_or_sections))
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
                "received %s." % (type(num_or_sections)))
1841
        if in_dygraph_mode():
C
Charles-hit 已提交
1842 1843 1844 1845
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
1846 1847
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
1848
            _legacy_C_ops.split(input, out, *attrs)
1849
            return out
1850

1851 1852 1853 1854
    check_variable_and_dtype(input, 'input', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'int8'
    ], 'split')
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')

    helper = LayerHelper('split', **locals())

    input_shape = input.shape
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
1882 1883 1884 1885 1886
                fill_constant([1],
                              'int32',
                              dim_size,
                              force_cpu=True,
                              out=temp_out)
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
        num = num_or_sections
    else:
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
        attrs['sections'] = list(
1912 1913
            map(lambda ele: -1
                if isinstance(ele, Variable) else ele, num_or_sections))
1914 1915 1916 1917 1918 1919 1920 1921
        if utils._contain_var(num_or_sections):
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
1922 1923 1924 1925
    helper.append_op(type='split',
                     inputs=inputs,
                     outputs={'Out': outs},
                     attrs=attrs)
1926
    return outs
1927 1928


1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
    
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
    
    Example:
        .. code-block:: python
            
            import paddle
            
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
            "The input tensor's dimension must be greater than 1, but got {}".
            format(x.ndim))
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
1971
def squeeze(x, axis=None, name=None):
1972
    """
1973
    Squeeze the dimension(s) of size 1 of input tensor x's shape. 
1974 1975 1976 1977
    
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
1978

L
Leo Chen 已提交
1979 1980 1981
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
1982 1983 1984 1985 1986 1987

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
1988 1989
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
1990
          Output:
L
Leo Chen 已提交
1991
            out.shape = [3, 5]
1992 1993 1994 1995

        Case2:

          Input:
L
Leo Chen 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
2006
          Output:
L
Leo Chen 已提交
2007
            out.shape = [3, 5]
2008

L
Leo Chen 已提交
2009
        Case4:
2010 2011

          Input:
L
Leo Chen 已提交
2012 2013
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
2014
          Output:
L
Leo Chen 已提交
2015
            out.shape = [1, 3, 5]
2016 2017

    Args:
2018
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2019
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2020 2021 2022
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2023 2024 2025
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
2026
        Tensor: Squeezed Tensor with the same data type as input Tensor.
2027 2028 2029

    Examples:
        .. code-block:: python
2030

2031
            import paddle
L
Leo Chen 已提交
2032 2033 2034
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2035 2036

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2037
            print(output.shape)  # [5, 10]
2038

2039 2040 2041 2042
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2043
    """
L
Leo Chen 已提交
2044 2045 2046 2047 2048 2049
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2050

2051 2052 2053
    input = x
    axes = axis
    if in_dygraph_mode():
2054
        return _C_ops.squeeze(input, axes)
2055
    if _in_legacy_dygraph():
2056
        out, _ = _legacy_C_ops.squeeze2(input, 'axes', axes)
2057 2058 2059 2060 2061 2062 2063
        return out

    helper = LayerHelper("squeeze", **locals())
    check_variable_and_dtype(input, 'input', [
        'float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64',
        'complex64', 'complex128'
    ], 'squeeze')
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
    attrs = {}
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        attrs["axes"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            attrs["axes"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

2076 2077
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2078 2079
    helper.append_op(type="squeeze2",
                     inputs={"X": input},
2080
                     attrs=attrs,
2081 2082 2083 2084
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2085 2086

    return out
2087 2088


2089
@inplace_apis_in_dygraph_only
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2102 2103 2104
    input = x
    axes = axis
    if in_dygraph_mode():
2105
        return _C_ops.squeeze_(input, axes)
2106
    if _in_legacy_dygraph():
2107
        out, _ = _legacy_C_ops.squeeze2_(input, 'axes', axes)
2108
        return out
2109 2110


D
duanboqiang 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
def unique_consecutive(x,
                       return_inverse=False,
                       return_counts=False,
                       axis=None,
                       dtype="int64",
                       name=None):
    r"""
    Eliminates all but the first element from every consecutive group of equivalent elements.

    .. note:: This function is different from :func:`paddle.unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++.

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
        tuple: (out, inverse, counts). `out` is the unique consecutive tensor for `x`. `inverse` is provided only if `return_inverse` is True. `counts` is provided only if `return_counts` is True.

    Example:
        .. code-block:: python

            import paddle 

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
            output = paddle.unique_consecutive(x) # 
            np_output = output.numpy() # [1 2 3 1 2]
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
            np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
            np_counts = inverse.numpy() # [2 2 1 2 1]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
            output = paddle.unique_consecutive(x, axis=0) # 
            np_output = output.numpy()
            # [[2 1 3]
            #  [3 0 1]
            #  [2 1 3]]
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2168
    if in_dygraph_mode():
2169
        out, inverse, counts = _C_ops.unique_consecutive(
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
            x, return_inverse, return_counts, axis, attr_dtype)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    elif paddle.in_dynamic_mode():
2180
        out, inverse, counts = _legacy_C_ops.unique_consecutive(
D
duanboqiang 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
            x, 'dtype', attr_dtype, 'return_inverse', return_inverse,
            'return_counts', return_counts, 'axis', axis)
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'],
                             'unique_consecutive')
    check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
    check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique_consecutive')
    helper = LayerHelper('unique_consecutive', **locals())
    attrs = {
        'dtype': attr_dtype,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
    }
2206 2207 2208 2209 2210 2211
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
D
duanboqiang 已提交
2212 2213 2214 2215 2216 2217
    outputs = {"Out": out, "Index": inverse, "Counts": counts}
    outs = [out]
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)
2218 2219 2220 2221
    helper.append_op(type="unique_consecutive",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
D
duanboqiang 已提交
2222 2223 2224 2225 2226
    if len(outs) == 1:
        return outs[0]
    return tuple(outs)


Z
Zhang Ting 已提交
2227 2228 2229 2230 2231
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
2232
           dtype="int64",
Z
Zhang Ting 已提交
2233
           name=None):
2234
    r"""
Z
Zhang Ting 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2246 2247
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2248 2249 2250 2251
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
2252
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2253 2254 2255 2256 2257
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2258

Z
Zhang Ting 已提交
2259 2260
            import paddle

2261
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2262 2263 2264 2265 2266 2267 2268
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

2269
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2282
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2283 2284
    if _non_static_mode():
        if in_dygraph_mode():
2285
            out, indices, inverse, counts = _C_ops.unique(
2286 2287 2288
                x, return_index, return_inverse, return_counts, axis,
                attr_dtype)
        if _in_legacy_dygraph():
2289
            out, inverse, indices, counts = _legacy_C_ops.unique(
2290 2291 2292
                x, 'dtype', attr_dtype, 'return_index', return_index,
                'return_inverse', return_inverse, 'return_counts',
                return_counts, 'axis', axis, "is_sorted", True)
Z
Zhang Ting 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
2311
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
2312 2313 2314 2315 2316
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
2317
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
2318 2319 2320 2321 2322 2323
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
2324 2325 2326 2327 2328 2329 2330 2331
    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    indices = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                        stop_gradient=True)
    counts = helper.create_variable_for_type_inference(dtype=attr_dtype,
                                                       stop_gradient=True)
2332 2333 2334 2335 2336 2337
    outputs = {
        "Out": out,
        "Indices": indices,
        "Index": inverse,
        "Counts": counts
    }
Z
Zhang Ting 已提交
2338 2339 2340 2341 2342 2343 2344 2345
    outs = [out]
    if return_index:
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        outs.append(counts)

2346 2347 2348 2349
    helper.append_op(type="unique",
                     inputs={"X": x},
                     attrs=attrs,
                     outputs=outputs)
Z
Zhang Ting 已提交
2350 2351 2352 2353 2354 2355 2356

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


2357
def unsqueeze(x, axis, name=None):
2358
    """
2359 2360 2361
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2362

2363 2364 2365 2366
    Note that the output Tensor will share data with origin Tensor and doesn't have a 
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version, 
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2367
    Args:
2368 2369 2370 2371 2372 2373
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2374 2375

    Returns:
2376
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
2377 2378 2379

    Examples:
        .. code-block:: python
2380

2381 2382
            import paddle

2383 2384 2385 2386 2387 2388 2389 2390
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
2391

L
Leo Chen 已提交
2392
            axis = paddle.to_tensor([0, 1, 2])
2393 2394
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
2395 2396 2397 2398 2399 2400

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2401
            
2402
    """
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
    input = x
    axes = axis
    if _non_static_mode():
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
            axes = axes.numpy().tolist()
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
        if _in_legacy_dygraph():
2416
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
2417
            return out
2418
        return _C_ops.unsqueeze(input, axes)
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
    check_variable_and_dtype(input, 'input', [
        'float16',
        'float32',
        'float64',
        'bool',
        'int8',
        'int16',
        'int32',
        'int64',
        'complex64',
        'complex128',
    ], 'unsqueeze')
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
        if utils._contain_var(axes):
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
        else:
            attrs["axes"] = axes

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
2450 2451 2452 2453 2454 2455 2456
    helper.append_op(type="unsqueeze2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
2457

2458
    return out
2459 2460


2461
@inplace_apis_in_dygraph_only
2462 2463 2464 2465 2466
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2467 2468 2469 2470 2471 2472 2473 2474
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
        axes = axes.numpy().tolist()
    elif isinstance(axes, (list, tuple)):
        axes = [
2475
            item.numpy().item(0) if isinstance(item, Variable) else item
2476
            for item in axes
2477
        ]
2478
    if in_dygraph_mode():
2479 2480
        return _C_ops.unsqueeze_(input, axes)
    out, _ = _legacy_C_ops.unsqueeze2_(input, 'axes', axes)
2481
    return out
2482 2483


2484
def gather(x, index, axis=None, name=None):
2485
    """
2486 2487
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2488 2489 2490 2491 2492 2493

    .. code-block:: text


                Given:

2494
                x = [[1, 2],
2495 2496 2497
                     [3, 4],
                     [5, 6]]

2498 2499
                index = [1, 2]
                axis=[0]
2500 2501 2502

                Then:

2503
                out = [[3, 4],
2504 2505
                       [5, 6]] 

2506
    Args:
2507
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2508 2509
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2510
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
2511
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2512 2513
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2514 2515

    Returns:
2516 2517
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
2518 2519 2520 2521 2522 2523
    Examples:

        .. code-block:: python

            import paddle

2524 2525
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2526 2527
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2528
    """
2529 2530
    if axis is None:
        axis = 0
2531

2532
    if in_dygraph_mode():
2533
        return _C_ops.gather(x, index, axis)
2534
    if _in_legacy_dygraph():
2535
        axis = axis.item() if isinstance(axis, paddle.Tensor) else axis
2536 2537
        return _legacy_C_ops.gather(x, index, None, "axis", axis, "overwrite",
                                    False)
2538 2539

    check_variable_and_dtype(
2540 2541
        x, 'x',
        ['float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
2542 2543
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2544

2545 2546 2547
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')

2548
    helper = LayerHelper('gather', **locals())
2549
    dtype = helper.input_dtype('x')
2550
    out = helper.create_variable_for_type_inference(dtype)
2551
    if not isinstance(axis, Variable):
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index
                         },
                         attrs={
                             'axis': axis,
                             'overwrite': False
                         },
                         outputs={"Out": out})
2562
    else:
2563 2564 2565 2566 2567 2568 2569 2570
        helper.append_op(type="gather",
                         inputs={
                             "X": x,
                             "Index": index,
                             "Axis": axis
                         },
                         attrs={"overwrite": False},
                         outputs={"Out": out})
2571

2572
    return out
myq406450149's avatar
myq406450149 已提交
2573 2574 2575 2576


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2577

myq406450149's avatar
myq406450149 已提交
2578
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2579

myq406450149's avatar
myq406450149 已提交
2580
    Args:
2581 2582 2583
        input (Tensor): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. 
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2584
    Returns:
2585
        list(Tensor): The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2586 2587 2588

    Example:
        .. code-block:: python
2589

myq406450149's avatar
myq406450149 已提交
2590
            import paddle
2591

C
Chen Long 已提交
2592 2593 2594
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
       
2595
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2596 2597 2598
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2599

2600
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2601 2602 2603 2604 2605
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2606
    if in_dygraph_mode():
2607
        return _C_ops.unbind(input, axis)
2608

myq406450149's avatar
myq406450149 已提交
2609 2610 2611 2612 2613 2614 2615 2616
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
2617
    if _in_legacy_dygraph():
2618
        return _legacy_C_ops.unbind(input, num, 'axis', axis)
2619 2620 2621 2622 2623 2624

    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
myq406450149's avatar
myq406450149 已提交
2625 2626 2627 2628
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]
2629 2630 2631 2632
    helper.append_op(type="unbind",
                     inputs={"X": input},
                     outputs={"Out": outs},
                     attrs={"axis": axis})
myq406450149's avatar
myq406450149 已提交
2633
    return outs
L
lilong12 已提交
2634 2635


S
ShenLiang 已提交
2636 2637 2638 2639 2640 2641
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
2642
    
S
ShenLiang 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
S
sunzhongkai588 已提交
2672 2673 2674 2675
            
            If True, use the overwrite mode to update the output of the same index,
	        if False, use the accumulate mode to update the output of the same index.Default value is True.
        
S
ShenLiang 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle

2686 2687 2688
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2710
    if in_dygraph_mode():
2711
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2712 2713
    else:
        if _in_legacy_dygraph():
2714 2715
            return _legacy_C_ops.scatter(x, index, updates, 'overwrite',
                                         overwrite)
J
Jiabin Yang 已提交
2716 2717
        else:
            check_variable_and_dtype(
2718 2719
                x, 'dtype', ['float32', 'float64', 'float16', 'int32', 'int64'],
                'scatter')
J
Jiabin Yang 已提交
2720 2721 2722
            check_type(overwrite, 'overwrite', bool, 'scatter')
            helper = LayerHelper('scatter', **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
2723 2724 2725 2726 2727 2728 2729 2730
            helper.append_op(type="scatter",
                             inputs={
                                 "X": x,
                                 "Ids": index,
                                 "Updates": updates
                             },
                             attrs={'overwrite': overwrite},
                             outputs={"Out": out})
J
Jiabin Yang 已提交
2731
            return out
S
ShenLiang 已提交
2732 2733


2734
@inplace_apis_in_dygraph_only
2735 2736 2737 2738 2739
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2740
    if in_dygraph_mode():
2741 2742
        return _C_ops.scatter_(x, index, updates, overwrite)
    return _legacy_C_ops.scatter_(x, index, updates, 'overwrite', overwrite)
2743 2744


2745
def scatter_nd_add(x, index, updates, name=None):
2746
    r"""
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2788
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2806 2807 2808 2809
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
            
2810
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
2811 2812
            print(output.shape)
            # [3, 5, 9, 10]
2813
    """
2814
    if in_dygraph_mode():
2815
        return _C_ops.scatter_nd_add(x, index, updates)
2816 2817
    else:
        if _in_legacy_dygraph():
2818
            op = getattr(_legacy_C_ops, 'scatter_nd_add')
2819 2820 2821 2822 2823 2824 2825 2826
            return op(x, index, updates)
        else:
            if x.dtype != updates.dtype:
                raise ValueError("x and updates must have same data type.")

            helper = LayerHelper('scatter_nd_add', **locals())
            dtype = helper.input_dtype(input_param_name='x')
            output = helper.create_variable_for_type_inference(dtype)
2827 2828 2829 2830 2831 2832 2833
            helper.append_op(type="scatter_nd_add",
                             inputs={
                                 "X": x,
                                 "Index": index,
                                 "Updates": updates
                             },
                             outputs={"Out": output})
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
            return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
2878 2879


2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
2894
    
2895 2896 2897 2898 2899 2900 2901 2902
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
2903
            x = paddle.to_tensor(x_np)
2904

2905
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
2919
    return split(x, num_or_sections=chunks, axis=axis, name=name)
2920 2921


L
lilong12 已提交
2922 2923
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
2924 2925

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
2926
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
2927 2928 2929

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
2930
    Args:
L
lilong12 已提交
2931
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
2932
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
2933 2934 2935
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
2936
    Returns:
2937
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
2938

L
lilong12 已提交
2939 2940
    Examples:
        .. code-block:: python
L
lilong12 已提交
2941

L
lilong12 已提交
2942
            import paddle
L
lilong12 已提交
2943

2944
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
2945
            out = paddle.tile(data, repeat_times=[2, 1])
2946
            np_out = out.numpy()
2947 2948
            # [[1, 2, 3]
            #  [1, 2, 3]]
L
lilong12 已提交
2949

2950
            out = paddle.tile(data, repeat_times=(2, 2))
2951
            np_out = out.numpy()
2952 2953
            # [[1, 2, 3, 1, 2, 3]
            #  [1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2954

2955
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
2956
            out = paddle.tile(data, repeat_times=repeat_times)
2957
            np_out = out.numpy()
2958
            # [[1, 2, 3, 1, 2, 3]]
L
lilong12 已提交
2959
    """
H
hong 已提交
2960
    if in_dygraph_mode():
2961
        if isinstance(repeat_times, core.eager.Tensor):
2962
            assert repeat_times.ndim == 1, "Only support ndim == 1 while repeat_times is a Tensor."
2963 2964
            repeat_times = repeat_times.numpy().tolist()

2965
        return _C_ops.tile(x, repeat_times)
H
hong 已提交
2966 2967

    if _in_legacy_dygraph():
2968
        return _legacy_C_ops.tile(x, 'repeat_times', repeat_times)
H
hong 已提交
2969

2970 2971
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
2972 2973
        assert len(
            repeat_times.shape) == 1, ('repeat_times must be an 1-D Tensor.')
2974 2975 2976 2977 2978 2979
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
2980
                type_tuple = (int, np.int32, np.int64)
2981 2982
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
2983

2984 2985 2986
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'tile')
L
lilong12 已提交
2987
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
2988 2989
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
2990
            "must set its stop_gradient to be True by "
2991 2992 2993
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
2994

L
lilong12 已提交
2995 2996 2997
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
2998 2999 3000 3001 3002 3003 3004 3005
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
3006
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
3007 3008 3009 3010
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
3011 3012
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
3013 3014 3015
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
3016 3017
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)
L
lilong12 已提交
3018 3019 3020

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3021 3022 3023 3024
    helper.append_op(type='tile',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
L
lilong12 已提交
3025
    return out
3026 3027


L
lilong12 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3037
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3048 3049
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3050
            out = paddle.expand_as(data_x, data_y)
3051
            np_out = out.numpy()
L
lilong12 已提交
3052 3053
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3054
    if in_dygraph_mode():
3055
        return _C_ops.expand_as(x, None, y.shape)
H
hong 已提交
3056

H
hong 已提交
3057
    if _non_static_mode():
3058
        return _legacy_C_ops.expand_as_v2(x, 'target_shape', y.shape)
3059

3060 3061 3062
    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'expand_as')
L
lilong12 已提交
3063 3064 3065 3066 3067 3068 3069 3070
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
3071
    inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3072

3073
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
3074 3075
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3076 3077 3078 3079
    helper.append_op(type='expand_as_v2',
                     inputs=inputs,
                     attrs={'target_shape': y.shape},
                     outputs={'Out': out})
L
lilong12 已提交
3080 3081 3082
    return out


3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 1.


    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
3096
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
    Returns:
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3110
    if in_dygraph_mode():
3111
        return _C_ops.expand(x, shape)
3112
    if _in_legacy_dygraph():
3113
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3114 3115 3116 3117 3118 3119 3120 3121 3122

    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3123
                type_tuple = (int, np.int32, np.int64)
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

    check_variable_and_dtype(x, 'x',
                             ['bool', 'float32', 'float64', 'int32', 'int64'],
                             'broadcast_to')
    check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for broadcast_to is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input.")

    inputs = {"X": [x]}
    attrs = {}

    helper = LayerHelper('expand', **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "All elements in shape of broadcast_to must be positive or -1."
                )
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3166 3167 3168 3169
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3170 3171 3172
    return out


3173 3174 3175 3176 3177
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3178
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 1.
3179 3180 3181


    Args:
C
Chen Long 已提交
3182
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3183 3184 3185
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
3186 3187 3188
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
3189
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
3190 3191 3192 3193 3194 3195

    Examples:
        .. code-block:: python

            import paddle

3196
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3197
            out = paddle.expand(data, shape=[2, 3])
3198
            print(out)
3199 3200
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3201
    if in_dygraph_mode():
3202
        return _C_ops.expand(x, shape)
H
hong 已提交
3203

Z
zhiboniu 已提交
3204
    if paddle.in_dynamic_mode():
3205
        return _legacy_C_ops.expand_v2(x, 'shape', shape)
3206

3207 3208 3209 3210 3211 3212 3213 3214
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
T
tianshuo78520a 已提交
3215
                type_tuple = (int, np.int32, np.int64)
3216 3217 3218
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

3219
    check_variable_and_dtype(
3220 3221
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'expand')
3222
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
3223
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
3224 3225
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
3226
                         "some_var.stop_gradient = True, supporting "
3227 3228
                         "some_var as the input.")

3229 3230 3231
    inputs = {"X": [x]}
    attrs = {}

3232
    helper = LayerHelper('expand', **locals())
3233 3234 3235 3236 3237

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
L
lilong12 已提交
3238
                attrs_expand_shape.append(-2)
3239 3240 3241
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
3242
                    "All elements in shape of expand must be positive or -1.")
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
3256 3257 3258 3259
    helper.append_op(type='expand_v2',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
3260
    return out
L
lilong12 已提交
3261 3262


3263 3264
def reshape(x, shape, name=None):
    """
3265
    Changes the shape of ``x`` without changing its data.
3266

3267 3268 3269 3270 3271
    Note that the output Tensor will share data with origin Tensor and doesn't
    have a Tensor copy in ``dygraph`` mode. 
    If you want to use the Tensor copy version, please use `Tensor.clone` like 
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3272 3273
    Some tricks exist when specifying the target shape.

3274
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3275

3276
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3277 3278 3279

    Here are some examples to explain it.

3280
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3281

3282
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3283

3284
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3285 3286

    Args:
3287 3288
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3289 3290
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3291
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3292 3293 3294 3295 3296 3297 3298 3299 3300

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

3301 3302
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3303

3304 3305 3306
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3307

3308 3309
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3310
            # the shape of out_2 is [4, 12].
3311

3312
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3313
            out = paddle.reshape(x, shape=shape_tensor)
3314
            print(out.shape)
3315
            # the shape is [8, 6].
3316 3317 3318 3319 3320
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3321
    """
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
    actual_shape = None
    act = None
    inplace = False

    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        #TODO(zhiqiu): enable inplace in dygraph mode.
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        if isinstance(shape, (list, tuple)):
            shape = [
3335 3336
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
3337
            ]
3338
            out = _C_ops.reshape(x, shape)
3339 3340
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3341
            out = _C_ops.reshape(x, shape)
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

        return dygraph_utils._append_activation_in_dygraph(out, act)
    else:
        if _in_legacy_dygraph():
            tmp_tensor_type = Variable
            if inplace:
                warnings.warn(
                    "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
                )
            if isinstance(shape, (list, tuple)):
                shape = [
                    item.numpy().item(0) if isinstance(item, Variable) else item
                    for item in shape
                ]
3360
                out, _ = _legacy_C_ops.reshape2(x, None, 'shape', shape)
3361 3362
            elif isinstance(shape, tmp_tensor_type):
                shape.stop_gradient = True
3363
                out, _ = _legacy_C_ops.reshape2(x, shape)
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
            else:
                raise ValueError(
                    "shape must be an instance of `list`, `tuple` or `Variable`,"
                    " got '{}.'".format(type(shape)))

            return dygraph_utils._append_activation_in_dygraph(out, act)

    check_variable_and_dtype(x, 'x', [
        'float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'bool',
        'uint16'
    ], 'reshape')
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')

    helper = LayerHelper("reshape2", **locals())

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1.\n"
                        "\n\t# N = x.shape()[2]\t\t# N is an int. "
                        "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                        "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                        "\t# z.shape is [-1, -1, 4]\n\n"
                        "    If your target shape in Reshape represents dynamic shape, "
                        "please turn it into a Tensor under @to_static. See above example for details."
                        % dim_idx)
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
                else:
                    assert dim_size > 0, (
                        "Each dimension value of 'shape' in reshape must not "
                        "be negative except one unknown dimension. "
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
        return attrs_shape

    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
        if utils._contain_var(shape):
            inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
3432 3433 3434 3435 3436 3437 3438
    helper.append_op(type="reshape2",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={
                         "Out": out,
                         "XShape": x_shape
                     })
3439 3440

    return helper.append_activation(out)
3441 3442


3443
@inplace_apis_in_dygraph_only
3444 3445 3446 3447 3448
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3449 3450 3451 3452 3453 3454 3455
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0)
                if isinstance(item, tmp_tensor_type) else item for item in shape
            ]
3456
            out = _C_ops.reshape_(x, shape)
3457 3458
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3459
            out = _C_ops.reshape_(x, shape)
3460 3461 3462 3463 3464
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
                " got '{}.'".format(type(shape)))

3465
        return out
3466 3467 3468 3469 3470 3471
    else:
        if isinstance(shape, (list, tuple)):
            shape = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in shape
            ]
3472
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape)
3473 3474 3475 3476 3477 3478 3479 3480 3481
            return out
        elif isinstance(shape, Variable):
            shape.stop_gradient = True
            # NOTE(pangyoki): Cannot support the case where the shape Tensor
            # is negative. In the infer_shape stage, the input's dim will
            # be changed to a negative number.
            # Thus, convert Shape Tensor to list firstly and then call
            # reshape inplace op.
            shape_list = shape.numpy().tolist()
3482
            out, _ = _legacy_C_ops.reshape2_(x, None, 'shape', shape_list)
3483
            return out
3484 3485


3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3505 3506 3507 3508 3509 3510 3511
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3512 3513 3514 3515

            * Case 1:
                index = [[1]]

3516 3517
                gather_nd(x, index)
                         = [x[1, :, :]]
3518 3519 3520 3521 3522 3523 3524
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3525 3526
                gather_nd(x, index)
                         = [x[0, 2, :]]
3527 3528 3529 3530 3531
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3532 3533
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3534 3535 3536 3537 3538 3539
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3540
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3541 3542 3543 3544 3545 3546 3547

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
3548
            
3549 3550
            import paddle
            
3551 3552 3553
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3554 3555 3556 3557
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3558
    if in_dygraph_mode():
3559
        return _C_ops.gather_nd(x, index)
3560 3561
    else:
        if _in_legacy_dygraph():
3562
            return _legacy_C_ops.gather_nd(x, index)
3563 3564 3565 3566 3567 3568 3569
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
3570 3571 3572 3573 3574 3575
    helper.append_op(type="gather_nd",
                     inputs={
                         "X": x,
                         "Index": index
                     },
                     outputs={"Out": output})
3576
    return output
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3625

3626
    Args:
3627
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor:  A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].                                
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3657
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3658 3659 3660
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3661
    if in_dygraph_mode():
3662
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3663

3664 3665
    helper = LayerHelper('strided_slice', **locals())

3666 3667 3668
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'strided_slice')
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
    check_type(axes, 'axes', (list, tuple), 'strided_slice')
    check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
    check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
    check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

    def check_list_elements_dtype(list_input, input_name):
        if isinstance(list_input, Variable):
            check_dtype(list_input.dtype, input_name, ['int32'],
                        'strided_slice')
        else:
            for i, var in enumerate(list_input):
                var_name = input_name + '[' + str(i) + ']'
                if isinstance(var, Variable):
                    check_dtype(var.dtype, var_name, ['int32'], 'strided_slice')

    check_list_elements_dtype(axes, 'axes')
    check_list_elements_dtype(starts, 'starts')
    check_list_elements_dtype(ends, 'ends')
    check_list_elements_dtype(strides, 'strides')

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': x}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

3706
    if _in_legacy_dygraph():
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
        inputs = {'Input': x}
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
            if utils._contain_var(starts):
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
            if utils._contain_var(ends):
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
            if utils._contain_var(strides):
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
3769 3770 3771 3772
    helper.append_op(type='strided_slice',
                     inputs=inputs,
                     attrs=attrs,
                     outputs={'Out': out})
3773 3774

    return out
F
From00 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896


def tensordot(x, y, axes=2, name=None):
    r"""
    This function computes a contraction, which sum the product of elements from two tensors along the given axes. 

    Args:
        x (Tensor): The left tensor for contraction with data type ``float32`` or ``float64``.
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

            1. It could be a non-negative integer ``n``, 
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
        
            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes. 
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
        
            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``. 
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract. 
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``. 
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
        
            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list 
               and applied the same rules described above to determine the contraction axes. 
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property. 
                             For more information, please refer to :ref:`api_guide_Name` .

    Return: 
        Output (Tensor): The contraction result with the same data type as ``x`` and ``y``. 
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
    
    NOTES:
        1. This function supports tensor broadcast, 
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
        2. This function also supports axes expansion, 
           when the two given axis sequences for ``x`` and ``y`` are of different lengths, 
           the shorter sequence will expand the same axes as the longer one at the end. 
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]], 
           the axis sequence for ``x`` is [0, 1, 2, 3], 
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
  
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.   
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
            #      [28312230., 30496530., 32680830., 34865130.]] 
    """
    op_type = 'tensordot'
    input_dtype = ['float32', 'float64']

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
Z
zhiboniu 已提交
3897
        if paddle.in_dynamic_mode():
F
From00 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
            return tolist(var)
        raise TypeError(
            "The 'axes' with type 'Tensor' in " + op_type +
            " is not available in static graph mode, "
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
            "The 'axes' in " + op_type +
            f" should not be negative, but received axes={axes}.")
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
            assert sx == sy, "The dimensional size for 'x' and 'y' in " + op_type + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
        [not_contraction_size_x, contraction_size])
    y = y.transpose(perm=perm_y).reshape(
        [contraction_size, not_contraction_size_y])
    out = x.matmul(y).reshape(shape_out)
    return out
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012


def as_complex(x, name=None):
    """Transform a real tensor to a complex tensor. 
    
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e. 
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            print(y.numpy())

            # [[ 0. +1.j  2. +3.j  4. +5.j]
            #  [ 6. +7.j  8. +9.j 10.+11.j]]
    """
4013 4014
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4015 4016
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_complex(x)
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
    op_type = "as_complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(x.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out


def as_real(x, name=None):
    """Transform a complex tensor to a real tensor. 
    
    The data type of the input tensor is 'complex64' or 'complex128', and the data 
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output. Data type is 'float32' or 'float64', with the same precision as the input.
    
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
            print(z.numpy())

            # [[[ 0.  1.]
            #   [ 2.  3.]
            #   [ 4.  5.]]

            #  [[ 6.  7.]
            #   [ 8.  9.]
            #   [10. 11.]]]
    """
4064 4065
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4066 4067
    if _in_legacy_dygraph():
        return _legacy_C_ops.as_real(x)
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
    op_type = "as_real"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out
4078 4079


K
kuizhiqing 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4089
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4090 4091 4092 4093 4094 4095 4096
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor with same data type as ``x``.

4097 4098 4099 4100 4101
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4120 4121
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4122 4123
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4124 4125 4126 4127 4128 4129 4130

    helper = LayerHelper("repeat_interleave", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.manipulation.repeat_interleave')

    out = helper.create_variable_for_type_inference(x.dtype)

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
    helper.append_op(type='repeat_interleave',
                     inputs={
                         'X':
                         x,
                         'RepeatsTensor':
                         repeats if isinstance(repeats, Variable) else None
                     },
                     outputs={'Out': out},
                     attrs={
                         'dim': axis,
                         'Repeats': repeats if isinstance(repeats, int) else 0
                     })
K
kuizhiqing 已提交
4143 4144 4145
    return out


4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A new tensor whose axis have been moved.

    Examples:
        .. code-block:: python
        
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4172
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
            # [3, 2]  
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
        dst), "'source' must have the same number with 'destination'"

    count = Counter(src).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'source' must be unique!")
    count = Counter(dst).most_common(1)
    if count[0][1] > 1:
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
        assert isinstance(axis[0],
                          int), "Each elemment of 'source' must be integer."
        if axis[0] < 0:
            assert axis[
                0] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            src[i] += ndim
        else:
            assert axis[
                0] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)

        assert isinstance(axis[1],
                          int), "Each elemment of 'source' must be integer."
        if axis[1] < 0:
            assert axis[
                1] >= -ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
            dst[i] += ndim
        else:
            assert axis[
                1] < ndim, "'source' must be in the range of [-{0}, {0})".format(
                    ndim)
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4226
    if in_dygraph_mode():
4227
        out = _C_ops.transpose(x, perm)
4228 4229 4230
        return out

    if _in_legacy_dygraph():
4231
        out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
4232 4233
        return out

4234 4235 4236 4237
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'moveaxis')
4238 4239 4240 4241

    helper = LayerHelper('moveaxis', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
4242 4243 4244 4245 4246 4247 4248
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
4249
    return out
4250 4251


4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
        assert axis < ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
    else:
        assert axis >= -ndim, "'axis'  must be in the range of [-{0}, {0})".format(
            ndim)
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4266
    # This function is used in take/put_along_axis
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4277 4278 4279 4280 4281
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4282
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4283
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4284
            and need to broadcast against arr. Supported data type are int and int64.
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
        axis (int) : The axis to take 1d slices along. 

    Returns: 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python

            import paddle

4295 4296
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4297 4298 4299 4300 4301
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4302 4303 4304 4305 4306 4307 4308 4309
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
H
hong 已提交
4310
    if _non_static_mode():
4311
        indices = paddle.broadcast_to(indices, broadcast_shape)
4312 4313 4314 4315
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
H
hong 已提交
4316
        if not _in_legacy_dygraph():
4317 4318
            return _C_ops.take_along_axis(arr, indices, axis)
        return _legacy_C_ops.take_along_axis(arr, indices, 'Axis', axis)
4319 4320 4321 4322 4323
    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'take_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'take_along_axis')
4324
    indices = paddle.broadcast_to(indices, broadcast_shape)
4325 4326 4327 4328
    broadcast_shape_list = list(broadcast_shape)
    broadcast_shape_list[axis] = list(arr.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    arr = paddle.broadcast_to(arr, broadcast_shape)
4329 4330 4331
    helper = LayerHelper('take_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4332 4333 4334 4335 4336 4337 4338
    helper.append_op(type="take_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices
                     },
                     attrs={"Axis": axis},
                     outputs={"Result": result})
4339
    return result
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
        axis (int) : The axis to put 1d slices along. 
        reduce (string | optinal) : The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.
    Returns : 
        Tensor: The indexed element, same dtype with arr
    
    Examples:
        .. code-block:: python

            import paddle

4360 4361
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4362 4363 4364 4365 4366 4367 4368 4369
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4370 4371 4372 4373 4374
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
H
hong 已提交
4375
    if _non_static_mode():
4376 4377
        values = paddle.to_tensor(values) if not isinstance(
            values, paddle.Tensor) else values
4378 4379 4380
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
H
hong 已提交
4381
        if in_dygraph_mode():
4382 4383 4384
            return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
        return _legacy_C_ops.put_along_axis(arr, indices, values, "Axis", axis,
                                            "Reduce", reduce)
4385 4386 4387 4388 4389 4390

    check_variable_and_dtype(
        arr, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'put_along_axis')
    check_variable_and_dtype(indices, 'index', ['int32', 'int64'],
                             'put_along_axis')
4391 4392 4393
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4394 4395 4396
    helper = LayerHelper('put_along_axis', **locals())
    dtype = helper.input_dtype()
    result = helper.create_variable_for_type_inference(dtype)
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
    helper.append_op(type="put_along_axis",
                     inputs={
                         "Input": arr,
                         "Index": indices,
                         "Value": values
                     },
                     attrs={
                         "Axis": axis,
                         "Reduce": reduce
                     },
                     outputs={"Result": result})
4408 4409 4410 4411 4412 4413
    return result


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4414
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4415 4416
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4417 4418 4419 4420 4421
    if (len(arr.shape) != len(indices.shape)):
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions!")
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4422 4423
    values = paddle.to_tensor(values) if not isinstance(
        values, paddle.Tensor) else values
4424 4425 4426
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4427
    if in_dygraph_mode():
4428 4429 4430
        return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
    return _legacy_C_ops.put_along_axis_(arr, indices, values, "Axis", axis,
                                         "Reduce", reduce)
4431 4432


L
Li Min 已提交
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
def _index_add_params_check(x, index, input_axis, add_value):
    dims = len(x.shape)
    add_value_dims = len(add_value.shape)

    if input_axis >= 0:
        axis = input_axis
    else:
        axis = input_axis + dims

    check_axis = axis
    if check_axis >= dims or check_axis < -dims:
        raise ValueError("Axis should be in range [-rank(x), rank(x)).")

    if isinstance(index, Variable):
        if index.dtype not in [paddle.int64, paddle.int32]:
            raise TypeError("The index dtype should be int32 or int64.")
        if len(index.shape) != 1:
            raise ValueError("The index should be a 1-D Tensor.")

    if dims != add_value_dims:
        raise ValueError(
            "The add_value does not support broadcast now. It must have the same dimension as x."
        )
    for i in range(dims):
        if i != axis and x.shape[i] != add_value.shape[i]:
            raise ValueError(
                "The add_value.shape[i] should be equal to x.shape[i] when i != axis."
            )


def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
        axis (int): The dimension in which we index. 
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: same dimention and dtype with x.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
            print(outplace_res.numpy())
            # [[2 2 2]
            #  [1 1 1]
            #  [2 2 2]]
    """
    _index_add_params_check(x, index, axis, value)

    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.manipulation.index_add')
    check_variable_and_dtype(
        value, 'add_value', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add')

    out = helper.create_variable_for_type_inference(x.dtype)

    helper.append_op(type='index_add',
                     inputs={
                         'X': x,
                         'Index': index,
                         'AddValue': value,
                     },
                     outputs={'Out': out},
                     attrs={'axis': axis})
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_index_add`.
    
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
            print(inplace_res.numpy())
            # [[2, 1, 2]
            #  [2, 1, 2]
            #  [2, 1, 2]]
    """

    _index_add_params_check(x, index, axis, value)
    return _C_ops.index_add_(x, index, value, axis)


4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
    'tolist': tolist
}
for name, func in __METHODS.items():
    setattr(core.VarBase, name, func)
    setattr(core.eager.Tensor, name, func)