manipulation.py 52.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
import six
25
# TODO: define functions to manipulate a tensor  
26 27 28 29 30 31
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

32 33 34
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
35
from ..fluid import layers
36
import paddle
37

W
Wilber 已提交
38
__all__ = [
39 40 41
    'cast',
    'concat',
    'expand',
L
lilong12 已提交
42
    'broadcast_to',
43 44 45 46 47 48 49 50 51 52 53 54
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
55
    'chunk',
56 57 58 59 60 61 62 63 64 65 66
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unique_with_counts',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
67
    'tile',
W
Wilber 已提交
68 69 70
]


71 72 73
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
74
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
75 76 77 78

    This OP concatenates the input along the axis.

    Args:
79 80
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
81 82 83 84
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
85 86 87 88 89
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
90
        Tensor: A Tensor with the same data type as ``x``.
91 92 93 94 95 96

    Examples:
        .. code-block:: python
            
            import paddle
            
97
            paddle.disable_static()  # Now we are in imperative mode
98 99 100 101 102 103
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
104 105 106
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
107 108 109
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
110 111 112 113 114 115 116 117 118
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
119
    check_type(x, 'x', (list, tuple), 'concat')
120 121 122
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
123
def flip(x, axis, name=None):
W
Wilber 已提交
124
    """
125 126
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
127

W
Wilber 已提交
128

Y
yaoxuefeng 已提交
129
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
130 131

    Args:
Y
yaoxuefeng 已提交
132
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
133
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
134
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
135 136 137 138
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
139
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
140 141 142 143 144 145

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
146

147
          paddle.disable_static()
Y
yaoxuefeng 已提交
148 149 150 151

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
152
          img = paddle.to_tensor(x)
Y
yaoxuefeng 已提交
153 154 155
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
156 157
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
158 159
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
160 161 162
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
163
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
164 165 166 167 168 169 170
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
171
        inputs={"X": x},
W
Wilber 已提交
172
        outputs={"Out": out},
Y
yaoxuefeng 已提交
173
        attrs={"axis": axis})
W
Wilber 已提交
174
    return out
175 176


177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
Y
yaoxuefeng 已提交
212
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float32,
213 214 215 216 217 218 219
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
Y
yaoxuefeng 已提交
220
        Tensor: A tensor with the contents of the input tensor, with input \
221 222 223 224
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
Y
yaoxuefeng 已提交
225
        ValueError: If x is not a Tensor.
226 227 228 229 230 231 232 233 234 235
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
            
Y
yaoxuefeng 已提交
236 237 238
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
            
239 240 241 242
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
243
        raise ValueError("The input x should be a Tensor")
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
282
def roll(x, shifts, axis=None, name=None):
283
    """
284 285
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
286

Y
yaoxuefeng 已提交
287 288 289
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
290 291 292
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
293
        x (Tensor): The x tensor variable as input.
294
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
295 296
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
297 298

    Returns:
Y
yaoxuefeng 已提交
299
        Tensor: A Tensor with same data type as `x`.
300 301 302 303 304

    Examples:
        .. code-block:: python
            import paddle

305 306 307
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
308 309 310 311 312 313 314 315 316 317
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
318 319
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
320
    origin_shape = x.shape
321 322
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
336 337 338
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
339 340 341 342
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
343 344
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
345
    out = helper.create_variable_for_type_inference(x.dtype)
346

Y
yaoxuefeng 已提交
347 348 349
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
350 351 352

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
353
        inputs={'X': x},
354
        outputs={'Out': out},
Y
yaoxuefeng 已提交
355
        attrs={'axis': axis,
356
               'shifts': shifts})
357
    out = layers.reshape(out, shape=origin_shape)
358
    return out
359 360


L
Leo Chen 已提交
361
def stack(x, axis=0, name=None):
362
    """
363
	:alias_main: paddle.stack
L
Leo Chen 已提交
364
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
365

L
Leo Chen 已提交
366 367 368 369 370 371 372
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
408
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
409 410 411 412 413 414 415 416

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
417
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
418
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
419 420 421 422 423
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
424
    Returns:
L
Leo Chen 已提交
425
        Tensor: The stacked tensor with same data type as input.
426 427 428

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
429

430
            import paddle
431
            
432
            paddle.disable_static()
L
Leo Chen 已提交
433 434 435
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
L
Leo Chen 已提交
436 437 438 439 440 441 442 443
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
444 445


446
def split(x, num_or_sections, axis=0, name=None):
447 448
    """
    Split the input tensor into multiple sub-Tensors.
449
    
450
    Args:
451 452 453 454 455 456 457 458 459 460 461
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
462
    Returns:
463
        list(Tensor): The list of segmented Tensors.
464
    
465 466
    Example:
        .. code-block:: python
467
            
468 469 470
            import numpy as np
            import paddle
            
471
            paddle.disable_static()
472 473
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
W
wangchaochaohu 已提交
474
            x = paddle.to_tensor(x_np)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
497
    """
498 499
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
500 501


L
Leo Chen 已提交
502
def squeeze(x, axis=None, name=None):
503
    """
504
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
505
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
506

L
Leo Chen 已提交
507
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
508

L
Leo Chen 已提交
509 510 511
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
512 513 514 515 516 517

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
518 519
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
520
          Output:
L
Leo Chen 已提交
521
            out.shape = [3, 5]
522 523 524 525

        Case2:

          Input:
L
Leo Chen 已提交
526 527 528 529 530 531 532 533 534 535
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
536
          Output:
L
Leo Chen 已提交
537
            out.shape = [3, 5]
538

L
Leo Chen 已提交
539
        Case4:
540 541

          Input:
L
Leo Chen 已提交
542 543
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
544
          Output:
L
Leo Chen 已提交
545
            out.shape = [1, 3, 5]
546 547

    Args:
548
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
549
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
550 551 552
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
553 554 555
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
556
        Tensor: Squeezed Tensor with the same data type as input Tensor.
557 558 559

    Examples:
        .. code-block:: python
560

561 562
            import paddle

563
            paddle.disable_static()
L
Leo Chen 已提交
564 565 566 567
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
568 569

    """
L
Leo Chen 已提交
570 571 572 573 574 575
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
576

L
Leo Chen 已提交
577
    return layers.squeeze(x, axis, name)
578 579


Z
Zhang Ting 已提交
580 581 582 583 584
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
585
           dtype="int64",
Z
Zhang Ting 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598
           name=None):
    """
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
599 600
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()
615
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
616 617 618 619 620 621 622
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

623
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
624 625 626 627 628 629 630 631 632 633 634 635
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
636
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
637 638
    if in_dygraph_mode():
        out, inverse, indices, counts = core.ops.unique(
Z
Zhang Ting 已提交
639
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
660
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
661 662 663 664 665
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
666
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
667 668 669 670 671 672 673 674 675
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
676
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
677 678 679 680
    outputs = {"Out": out, "Index": inverse}
    outs = [out]
    if return_index:
        indices = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
681
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
682 683 684 685 686 687
        outputs["Indices"] = indices
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        counts = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
688
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
689 690 691 692 693 694 695 696 697 698 699 700
        outputs["Counts"] = counts
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


701
def unsqueeze(x, axis, name=None):
702
    """
703
	:alias_main: paddle.unsqueeze
704
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
705

706 707 708
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
709 710

    Args:
711 712 713 714 715 716
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
717 718

    Returns:
719
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
720 721 722

    Examples:
        .. code-block:: python
723

724 725
            import paddle

726
            paddle.disable_static()
727 728 729 730 731 732 733 734
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
735

736 737 738 739
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
740 741
    """

742
    return layers.unsqueeze(x, axis, name)
743 744


745
def gather(x, index, axis=None, name=None):
746
    """
S
swtkiwi 已提交
747

748 749
    **Gather Layer**

750 751
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
752 753 754 755 756 757

    .. code-block:: text


                Given:

758
                x = [[1, 2],
759 760 761
                     [3, 4],
                     [5, 6]]

762 763
                index = [1, 2]
                axis=[0]
764 765 766

                Then:

767
                out = [[3, 4],
768 769
                       [5, 6]]
    Args:
770
        x (Tensor): The source input tensor with rank>=1. Supported data type is
771 772
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
773
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
774
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
775 776
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
777 778

    Returns:
779 780
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
781 782 783 784 785 786
    Examples:

        .. code-block:: python

            import paddle

787
            paddle.disable_static()
788 789
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
790 791
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
792
    """
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    if axis is None:
        axis = 0
    axis_tensor = axis
    if not isinstance(axis, Variable):
        axis_tensor = fill_constant(shape=[1], dtype='int64', value=axis)
    if in_dygraph_mode():
        return core.ops.gather(x, index, axis_tensor)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
    else:
        check_type(axis, 'axis', (int), 'gather')

810 811 812 813 814
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
815 816 817 818
        inputs={"X": x,
                "Index": index,
                "Axis": axis_tensor},
        outputs={"Out": out})
819
    return out
myq406450149's avatar
myq406450149 已提交
820 821 822 823


def unbind(input, axis=0):
    """
824 825
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
826

myq406450149's avatar
myq406450149 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
877 878


S
ShenLiang 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle
            paddle.disable_static()

927 928 929
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
        return core.ops.scatter(x, index, updates, 'overwrite', overwrite)

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
def scatter_nd_add(x, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
        x (Tensor): The x input. Its dtype should be float32, float64.
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
        output (Tensor): The output is a tensor with the same shape and dtype as x.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            index_data = np.array([[1, 1],
                                   [0, 1],
                                   [1, 3]]).astype(np.int64)
            index = paddle.to_tensor(index_data)
            output = paddle.scatter_nd_add(x, index, updates)
    """
    return layers.scatter_nd_add(x, index, updates, name=None)


1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
1054
    
1055 1056 1057 1058 1059 1060 1061 1062 1063
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            paddle.disable_static()
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1064
            x = paddle.to_tensor(x_np)
1065

1066
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1084 1085
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1086 1087

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1088
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1089 1090 1091

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1092
    Args:
L
lilong12 已提交
1093 1094 1095 1096 1097
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1098
    Returns:
L
lilong12 已提交
1099 1100
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1101 1102
    Examples:
        .. code-block:: python
L
lilong12 已提交
1103

L
lilong12 已提交
1104
            import paddle
L
lilong12 已提交
1105

L
lilong12 已提交
1106
            paddle.disable_static()
1107
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1108
            out = paddle.tile(data, repeat_times=[2, 1])
1109
            np_out = out.numpy()
L
lilong12 已提交
1110
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1111 1112

            out = paddle.tile(data, repeat_times=[2, 2])
1113
            np_out = out.numpy()
L
lilong12 已提交
1114 1115
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

1116
            repeat_times = paddle.to_tensor([2, 1], dtype='int32')
L
lilong12 已提交
1117
            out = paddle.tile(data, repeat_times=repeat_times)
1118
            np_out = out.numpy()
L
lilong12 已提交
1119 1120
            # [[1, 2, 3], [1, 2, 3]]
    """
1121 1122
    if in_dygraph_mode():
        return core.ops.tile(x, 'repeat_times', repeat_times)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if isinstance(repeat_times, Variable):
        assert len(repeat_times.shape) == 1, (
            'repeat_times must be an 1-D Tensor.')
    else:
        for elem in repeat_times:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
            else:
                if six.PY3:
                    type_tuple = (int, np.int32, np.int64)
                elif six.PY2:
                    type_tuple = (int, long, np.int32, np.int64)
                assert isinstance(elem, type_tuple), (
                    'Elements in repeat_times must be 1-D Tensors or integers.')
1139

L
lilong12 已提交
1140 1141
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
L
lilong12 已提交
1142
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1143 1144
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1145
            "must set its stop_gradient to be True by "
1146 1147 1148
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1149

L
lilong12 已提交
1150 1151 1152
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1153 1154 1155 1156 1157 1158 1159 1160
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1161
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1162 1163 1164 1165 1166
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1167
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1179 1180


L
lilong12 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1190
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

1203 1204
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
1205
            out = paddle.expand_as(data_x, data_y)
1206
            np_out = out.numpy()
L
lilong12 已提交
1207 1208
            # [[1, 2, 3], [1, 2, 3]]
    """
1209 1210 1211
    if in_dygraph_mode():
        return core.ops.expand_as_v2(x, y)

L
lilong12 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
    inputs = {"X": [x], "target_tensor": [y]}

1224
    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1225 1226 1227 1228 1229 1230
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='expand_as_v2', inputs=inputs, outputs={'Out': out})
    return out


1231 1232 1233 1234 1235
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1236
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1237 1238 1239


    Args:
L
lilong12 已提交
1240 1241 1242 1243
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1244 1245 1246
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1247
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1248 1249 1250 1251 1252 1253

    Examples:
        .. code-block:: python

            import paddle

L
lilong12 已提交
1254
            paddle.disable_static()
1255
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
1256
            out = paddle.expand(data, shape=[2, 3])
1257
            out = out.numpy()
1258 1259
            # [[1, 2, 3], [1, 2, 3]]
    """
1260 1261 1262
    if in_dygraph_mode():
        return core.ops.expand_v2(x, 'shape', shape)

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    if isinstance(shape, Variable):
        assert len(shape.shape) == 1, ('shape must be an 1-D Tensor.')
    else:
        for elem in shape:
            if isinstance(elem, Variable):
                assert len(elem.shape) == 1, (
                    'Elements in shape must be 1-D Tensors or integers.')
            else:
                if six.PY3:
                    type_tuple = (int, np.int32, np.int64)
                elif six.PY2:
                    type_tuple = (int, long, np.int32, np.int64)
                assert isinstance(elem, type_tuple), (
                    'Elements in shape must be 1-D Tensors or integers.')

1278 1279 1280
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1281
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1282 1283
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1284
                         "some_var.stop_gradient = True, supporting "
1285 1286
                         "some_var as the input.")

1287 1288 1289
    inputs = {"X": [x]}
    attrs = {}

1290
    helper = LayerHelper('expand', **locals())
1291 1292 1293 1294 1295 1296 1297 1298 1299

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1300
                    "All elements in shape of expand must be positive or -1.")
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1317 1318 1319


broadcast_to = expand
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371


def reshape(x, shape, name=None):
    """
    This operator changes the shape of ``x`` without changing its data.

    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

1372 1373 1374 1375 1376 1377 1378
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
1379 1380
            # the shape of out_2 is [4, 12].
            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
1381 1382 1383
            out = paddle.reshape(x, shape=shape_tensor)
            print(out)
            # the shape is [8, 6].
1384 1385
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406


def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1407 1408 1409 1410 1411 1412 1413
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1414 1415 1416 1417

            * Case 1:
                index = [[1]]

1418 1419
                gather_nd(x, index)
                         = [x[1, :, :]]
1420 1421 1422 1423 1424 1425 1426
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1427 1428
                gather_nd(x, index)
                         = [x[0, 2, :]]
1429 1430 1431 1432 1433
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1434 1435
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Examples:

        .. code-block:: python
1451
            
1452 1453 1454
            import paddle
            
            paddle.disable_static()
1455 1456 1457
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
1458 1459 1460 1461 1462 1463
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)