manipulation.py 52.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25
from ..fluid.layers import cast  #DEFINE_ALIAS
26
from ..fluid.layers import expand_as  #DEFINE_ALIAS
27 28 29 30 31
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

32 33 34 35
from ..fluid.layers import scatter_nd_add  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
36
from ..fluid import layers
37
import paddle
38

W
Wilber 已提交
39
__all__ = [
40 41 42
    'cast',
    'concat',
    'expand',
L
lilong12 已提交
43
    'broadcast_to',
44 45 46 47 48 49 50 51 52 53 54 55
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
56
    'chunk'
57 58 59 60 61 62 63 64 65 66 67
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unique_with_counts',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
68
    'tile',
W
Wilber 已提交
69 70 71
]


72 73 74
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
75
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
76 77 78 79

    This OP concatenates the input along the axis.

    Args:
80 81
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
82 83 84 85
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
86 87 88 89
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Raises:
90 91
        TypeError: ``x`` must be list or tuple.
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32 and int64. 
92
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
93 94 95
        TypeError: All the Tensors in ``x`` must have the same data type.

    Returns:
96
        Tensor: A Tensor with the same data type as ``x``.
97 98 99 100 101 102 103

    Examples:
        .. code-block:: python
            
            import paddle
            import numpy as np
            
104
            paddle.disable_static()  # Now we are in imperative mode
105 106 107 108 109 110
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
W
wangchaochaohu 已提交
111 112 113
            x1 = paddle.to_tensor(in1)
            x2 = paddle.to_tensor(in2)
            x3 = paddle.to_tensor(in3)
114 115 116
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
117 118 119
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
120 121 122 123 124 125 126 127 128
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
129
    check_type(x, 'x', (list, tuple), 'concat')
130 131 132
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
133
def flip(x, axis, name=None):
W
Wilber 已提交
134
    """
135 136
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
137

W
Wilber 已提交
138

Y
yaoxuefeng 已提交
139
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
140 141

    Args:
Y
yaoxuefeng 已提交
142
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
143
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
144
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
145 146 147 148
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
149
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
150 151 152 153 154 155

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
156

157
          paddle.disable_static()
Y
yaoxuefeng 已提交
158 159 160 161

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
162
          img = paddle.to_variable(x)
Y
yaoxuefeng 已提交
163 164 165
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
166 167
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
168 169
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
170 171 172
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
173
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
174 175 176 177 178 179 180
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
181
        inputs={"X": x},
W
Wilber 已提交
182
        outputs={"Out": out},
Y
yaoxuefeng 已提交
183
        attrs={"axis": axis})
W
Wilber 已提交
184
    return out
185 186


Y
yaoxuefeng 已提交
187 188 189
reverse = flip  #DEFINE_ALIAS


190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of number of dimentions >= axis. A tensor with data type float32,
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
        Variable: A tensor with the contents of the input tensor, with input \
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
        ValueError: If x is not a Variable.
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

248
            paddle.disable_static()
249 250 251 252 253

            image_shape=(2, 3, 4, 4)
            x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100.
            x = x.astype('float32')
            
254
            img = paddle.to_variable(x)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
298
def roll(x, shifts, axis=None, name=None):
299
    """
300 301
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
302

Y
yaoxuefeng 已提交
303 304 305
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
306 307 308
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
309
        x (Variable): The x tensor variable as input.
310
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
311 312
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
313 314

    Returns:
Y
yaoxuefeng 已提交
315
        Variable: A Tensor with same data type as `x`.
316 317 318 319 320 321 322 323 324 325

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data = np.array([[1.0, 2.0, 3.0],
                             [4.0, 5.0, 6.0],
                             [7.0, 8.0, 9.0]])
326 327
            paddle.disable_static()
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
328 329 330 331 332 333 334 335 336 337
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
338 339
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
340
    origin_shape = x.shape
341 342
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
356 357 358
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
359 360 361 362
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
363 364
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
365
    out = helper.create_variable_for_type_inference(x.dtype)
366

Y
yaoxuefeng 已提交
367 368 369
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
370 371 372

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
373
        inputs={'X': x},
374
        outputs={'Out': out},
Y
yaoxuefeng 已提交
375
        attrs={'axis': axis,
376
               'shifts': shifts})
377
    out = layers.reshape(out, shape=origin_shape, inplace=True)
378
    return out
379 380


L
Leo Chen 已提交
381
def stack(x, axis=0, name=None):
382
    """
383
	:alias_main: paddle.stack
L
Leo Chen 已提交
384
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
385

L
Leo Chen 已提交
386 387 388 389 390 391 392
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
428
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
429 430 431 432 433 434 435 436

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
437 438
        x (Tensor|list[Tensor]): Input ``x`` can be a single tensor, or a ``list`` of tensors.
                                     If ``x`` is a ``list``, the Tensors in ``x``
439
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
440 441 442 443 444
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
445
    Returns:
L
Leo Chen 已提交
446
        Tensor: The stacked tensor with same data type as input.
447 448 449

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
450

451
            import paddle
L
Leo Chen 已提交
452
            import numpy as np
453 454 455 456 457

            data1 = np.array([[1.0, 2.0]])
            data2 = np.array([[3.0, 4.0]])
            data3 = np.array([[5.0, 6.0]])

458 459 460 461
            paddle.disable_static()
            x1 = paddle.to_variable(data1)
            x2 = paddle.to_variable(data2)
            x3 = paddle.to_variable(data3)
L
Leo Chen 已提交
462 463 464 465 466 467 468 469 470

            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
471 472


473
def split(x, num_or_sections, axis=0, name=None):
474 475
    """
    Split the input tensor into multiple sub-Tensors.
476
    
477
    Args:
478 479 480 481 482 483 484 485 486 487 488
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
489
    Returns:
490
        list(Tensor): The list of segmented Tensors.
491
    Raises:
492 493 494
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``num_or_sections`` is not int, list or tuple.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
495 496
    Example:
        .. code-block:: python
497
            
498 499 500
            import numpy as np
            import paddle
            
501
            paddle.disable_static()
502 503
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
W
wangchaochaohu 已提交
504
            x = paddle.to_tensor(x_np)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
527
    """
528 529
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
530 531


L
Leo Chen 已提交
532
def squeeze(x, axis=None, name=None):
533
    """
534
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
535
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
536

L
Leo Chen 已提交
537
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
538

L
Leo Chen 已提交
539 540 541
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
542 543 544 545 546 547

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
548 549
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
550
          Output:
L
Leo Chen 已提交
551
            out.shape = [3, 5]
552 553 554 555

        Case2:

          Input:
L
Leo Chen 已提交
556 557 558 559 560 561 562 563 564 565
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
566
          Output:
L
Leo Chen 已提交
567
            out.shape = [3, 5]
568

L
Leo Chen 已提交
569
        Case4:
570 571

          Input:
L
Leo Chen 已提交
572 573
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
574
          Output:
L
Leo Chen 已提交
575
            out.shape = [1, 3, 5]
576 577

    Args:
578
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
579
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
580 581 582
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
583 584 585
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
586
        Tensor: Squeezed Tensor with the same data type as input Tensor.
587 588 589

    Examples:
        .. code-block:: python
590

591 592
            import paddle

593
            paddle.disable_static()
L
Leo Chen 已提交
594 595 596 597
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
598 599

    """
L
Leo Chen 已提交
600 601 602 603 604 605
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
606

L
Leo Chen 已提交
607
    return layers.squeeze(x, axis, name)
608 609


Z
Zhang Ting 已提交
610 611 612 613 614
def unique(x,
           return_index=False,
           return_inverse=False,
           return_counts=False,
           axis=None,
Z
Zhang Ting 已提交
615
           dtype="int64",
Z
Zhang Ting 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628
           name=None):
    """
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
629 630
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

    Returns: 
        tuple: (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()
            x_data = np.array([2, 3, 3, 1, 5, 3])
            x = paddle.to_tensor(x_data)
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [1 2 3 5]
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
            np_indices = indices.numpy() # [3 0 1 4]
            np_inverse = inverse.numpy() # [1 2 2 0 3 2]
            np_counts = counts.numpy() # [1 1 3 1]

            x_data = np.array([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
656
            x = paddle.to_tensor(x_data)
Z
Zhang Ting 已提交
657 658 659 660 661 662 663 664 665 666 667 668
            unique = paddle.unique(x)
            np_unique = unique.numpy() # [0 1 2 3]

            unique = paddle.unique(x, axis=0)
            np_unique = unique.numpy() 
            # [[2 1 3]
            #  [3 0 1]]
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
669
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
Z
Zhang Ting 已提交
670 671
    if in_dygraph_mode():
        out, inverse, indices, counts = core.ops.unique(
Z
Zhang Ting 已提交
672
            x, 'dtype', attr_dtype, 'return_index', return_index,
Z
Zhang Ting 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
            'return_inverse', return_inverse, 'return_counts', return_counts,
            'axis', axis, "is_sorted", True)
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    check_variable_and_dtype(x, "input",
                             ['float32', 'float64', 'int32', 'int64'], 'unique')
    check_type(return_index, 'return_index', bool, 'unique')
    check_type(return_inverse, 'return_inverse', bool, 'unique')
    check_type(return_counts, 'return_counts', bool, 'unique')
Z
Zhang Ting 已提交
693
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
Z
Zhang Ting 已提交
694 695 696 697 698
    if len(axis) != 0:
        check_type(axis[0], 'axis', int, 'unique')

    helper = LayerHelper('unique', **locals())
    attrs = {
Z
Zhang Ting 已提交
699
        'dtype': attr_dtype,
Z
Zhang Ting 已提交
700 701 702 703 704 705 706 707 708
        "return_index": return_index,
        "return_inverse": return_inverse,
        "return_counts": return_counts,
        "axis": axis,
        "is_sorted": True
    }
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    inverse = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
709
        dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
710 711 712 713
    outputs = {"Out": out, "Index": inverse}
    outs = [out]
    if return_index:
        indices = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
714
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
715 716 717 718 719 720
        outputs["Indices"] = indices
        outs.append(indices)
    if return_inverse:
        outs.append(inverse)
    if return_counts:
        counts = helper.create_variable_for_type_inference(
Z
Zhang Ting 已提交
721
            dtype=attr_dtype, stop_gradient=True)
Z
Zhang Ting 已提交
722 723 724 725 726 727 728 729 730 731 732 733
        outputs["Counts"] = counts
        outs.append(counts)

    helper.append_op(
        type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs)

    if len(outs) == 1:
        return outs[0]

    return tuple(outs)


734
def unsqueeze(x, axis, name=None):
735
    """
736
	:alias_main: paddle.unsqueeze
737
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
738

739 740 741
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
742 743

    Args:
744 745 746 747 748 749
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
750 751

    Returns:
752
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
753 754 755

    Examples:
        .. code-block:: python
756

757 758
            import paddle

759
            paddle.disable_static()
760 761 762 763 764 765 766 767
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
768

769 770 771 772
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
773
    """
774 775
    if isinstance(axis, int):
        axis = [axis]
776

777
    return layers.unsqueeze(x, axis, name)
778 779


780
def gather(x, index, axis=None, name=None):
781
    """
S
swtkiwi 已提交
782

783 784
    **Gather Layer**

785 786
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
787 788 789 790 791 792

    .. code-block:: text


                Given:

793
                x = [[1, 2],
794 795 796
                     [3, 4],
                     [5, 6]]

797 798
                index = [1, 2]
                axis=[0]
799 800 801

                Then:

802
                out = [[3, 4],
803 804
                       [5, 6]]
    Args:
805
        x (Tensor): The source input tensor with rank>=1. Supported data type is
806 807
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
808
        index (Tensor): The index input tensor with rank=1. Data type is int32 or int64.
809
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
810 811
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
812 813

    Returns:
814 815 816 817 818 819
        output (Tensor): The output is a tensor with the same rank as ``x``.
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must to be one of float16, float32, float64, int32, int64, uint8.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64.
        TypeError: ``axis`` must be a Tensor or int and the data type of ``index`` must be int32 or int64 when it's a Tensor.
820 821 822 823 824 825 826 827

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

828 829 830
            paddle.disable_static()
            input_1 = np.array([[1,2],[3,4],[5,6]])
            index_1 = np.array([0,1])
831 832
            input = paddle.to_tensor(input_1)
            index = paddle.to_tensor(index_1)
833 834
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
835
    """
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
    if axis is None:
        axis = 0
    axis_tensor = axis
    if not isinstance(axis, Variable):
        axis_tensor = fill_constant(shape=[1], dtype='int64', value=axis)
    if in_dygraph_mode():
        return core.ops.gather(x, index, axis_tensor)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'gather')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
    if isinstance(axis, Variable):
        check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
    else:
        check_type(axis, 'axis', (int), 'gather')

853 854 855 856 857
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
858 859 860 861
        inputs={"X": x,
                "Index": index,
                "Axis": axis_tensor},
        outputs={"Out": out})
862
    return out
myq406450149's avatar
myq406450149 已提交
863 864 865 866


def unbind(input, axis=0):
    """
867 868
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
869

myq406450149's avatar
myq406450149 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
920 921


S
ShenLiang 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
    
    .. code-block:: python
        import numpy as np
        #input:
        x = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
                x[index[i]] = np.zeros((2))
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]

    **NOTICE**: The order in which updates are applied is nondeterministic, 
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
        index (Tensor): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
        overwrite (bool): The mode that updating the output when there are same indices. 
          If True, use the overwrite mode to update the output of the same index,
	      if False, use the accumulate mode to update the output of the same index.Default value is True.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Tensor: The output is a Tensor with the same shape as x.

    Examples:
        .. code-block:: python
            
            import paddle
            import numpy as np
            paddle.disable_static()

            x_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            updates_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)
            
            x = paddle.to_tensor(x_data)
            index = paddle.to_tensor(index_data)
            updates = paddle.to_tensor(updates_data)
  
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
    if in_dygraph_mode():
        return core.ops.scatter(x, index, updates, 'overwrite', overwrite)

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'scatter')
    check_type(overwrite, 'overwrite', bool, 'scatter')
    helper = LayerHelper('scatter', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": x,
                "Ids": index,
                "Updates": updates},
        attrs={'overwrite': overwrite},
        outputs={"Out": out})
    return out


1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
    Raises:
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``chunks`` is not int.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            paddle.disable_static()
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
1043
            x = paddle.to_tensor(x_np)
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

            out0, out1, out22 = paddle.chunk(x, chunks=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
1063 1064
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
1065 1066

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
1067
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
1068 1069 1070

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
1071
    Args:
L
lilong12 已提交
1072 1073 1074 1075 1076
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
1077
    Returns:
L
lilong12 已提交
1078 1079
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
1080 1081
    Examples:
        .. code-block:: python
L
lilong12 已提交
1082

L
lilong12 已提交
1083 1084
            import paddle
            import numpy as np
L
lilong12 已提交
1085

L
lilong12 已提交
1086
            paddle.disable_static()
L
lilong12 已提交
1087
            np_data = np.array([1, 2, 3]).astype('int32')
1088
            data = paddle.to_tensor(np_data)
L
lilong12 已提交
1089
            out = paddle.tile(data, repeat_times=[2, 1])
1090
            np_out = out.numpy()
L
lilong12 已提交
1091
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
1092 1093

            out = paddle.tile(data, repeat_times=[2, 2])
1094
            np_out = out.numpy()
L
lilong12 已提交
1095 1096
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

L
lilong12 已提交
1097
            np_repeat_times = np.array([2, 1]).astype("int32")
1098
            repeat_times = paddle.to_tensor(np_repeat_times)
L
lilong12 已提交
1099
            out = paddle.tile(data, repeat_times=repeat_times)
1100
            np_out = out.numpy()
L
lilong12 已提交
1101 1102 1103 1104 1105
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
L
lilong12 已提交
1106
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
1107 1108
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
1109
            "must set its stop_gradient to be True by "
1110 1111 1112 1113
            "some_var.stop_gradient == True supporting some_var is the input.")

    if in_dygraph_mode():
        return core.ops.tile(x, 'repeat_times', repeat_times)
L
lilong12 已提交
1114

1115
    helper = LayerHelper('tile', **locals())
L
lilong12 已提交
1116

L
lilong12 已提交
1117 1118 1119
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
1120 1121 1122 1123 1124 1125 1126 1127
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
1128
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
1129 1130 1131 1132 1133
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
1134
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
1146 1147


L
lilong12 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
1157
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()

1171 1172 1173 1174
            np_data_x = np.array([1, 2, 3]).astype('int32')
            np_data_y = np.array([[1, 2, 3], [4, 5, 6]]).astype('int32')
            data_x = paddle.to_tensor(np_data_x)
            data_y = paddle.to_tensor(np_data_y)
L
lilong12 已提交
1175
            out = paddle.expand_as(data_x, data_y)
1176
            np_out = out.numpy()
L
lilong12 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
    inputs = {"X": [x], "target_tensor": [y]}

1191 1192 1193 1194
    if in_dygraph_mode():
        return core.ops.expand_as_v2(x, y)

    helper = LayerHelper('expand_as', **locals())
L
lilong12 已提交
1195 1196 1197 1198 1199 1200
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='expand_as_v2', inputs=inputs, outputs={'Out': out})
    return out


1201 1202 1203 1204 1205
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
1206
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
1207 1208 1209


    Args:
L
lilong12 已提交
1210 1211 1212 1213
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
1214 1215 1216
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
1217
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
1218 1219 1220 1221 1222 1223 1224

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

L
lilong12 已提交
1225
            paddle.disable_static()
1226 1227
            np_data = np.array([1, 2, 3]).astype('int32')
            data = paddle.to_tensor(np_data)
L
lilong12 已提交
1228
            out = paddle.expand(data, shape=[2, 3])
1229
            out = out.numpy()
1230 1231 1232 1233 1234
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1235 1236 1237 1238

    inputs = {"X": [x]}
    attrs = {}
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1239 1240
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1241
                         "some_var.stop_gradient = True, supporting "
1242 1243
                         "some_var as the input.")

1244 1245 1246 1247
    if in_dygraph_mode():
        return core.ops.expand_v2(x, 'shape', shape)

    helper = LayerHelper('expand', **locals())
1248 1249 1250 1251 1252 1253 1254 1255 1256

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1257
                    "All elements in shape of expand must be positive or -1.")
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1274 1275 1276


broadcast_to = expand
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354


def reshape(x, shape, name=None):
    """
    :alias_main: paddle.reshape
	:alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape

    This operator changes the shape of ``x`` without changing its data.

    Some tricks exist when specifying the target shape.

    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

    2. 0 means the actual dimension value is going to be copied from the
    corresponding dimension of x. The index of 0s in shape can not exceed
    the dimension of x.

    Here are some examples to explain it.

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
    shape [6, 8] and leaving x's data unchanged.

    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
    dimensions.

    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.

    Args:
        x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Raises:
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()

            data = np.random.random([2, 4, 6]).astype("float32")
            x = paddle.to_tensor(data)

            positive_four = paddle.fill_constant([1], "int32", 4)

            out_1 = paddle.reshape(x, [-1, 0, 3, 2])
            # the shape of out_1 is [2,4,3,2].

            out_2 = paddle.reshape(x, shape=[positive_four, 12])
            # the shape of out_2 is [4, 12].

            shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32"))
            out_3 = paddle.reshape(x, shape=shape_tensor)
            # the shape of out_2 is [8, 6].
    """
    return paddle.fluid.layers.reshape(x=x, shape=shape, name=name)
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375


def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
1376 1377 1378 1379 1380 1381 1382
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
1383 1384 1385 1386

            * Case 1:
                index = [[1]]

1387 1388
                gather_nd(x, index)
                         = [x[1, :, :]]
1389 1390 1391 1392 1393 1394 1395
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

1396 1397
                gather_nd(x, index)
                         = [x[0, 2, :]]
1398 1399 1400 1401 1402
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

1403 1404
                gather_nd(x, index)
                         = [x[1, 2, 3]]
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
                         = [23]

    Args:
        x (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of float32, float64, int32 and int64.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be one of int32 and int64.

    Examples:

        .. code-block:: python
1424
            
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
            import paddle
            import numpy as np
            
            paddle.disable_static()
            np_x = np.array([[[1, 2], [3, 4], [5, 6]],
                             [[7, 8], [9, 10], [11, 12]]])
            np_index = [[0, 1]]
            x = paddle.to_tensor(np_x)
            index = paddle.to_tensor(np_index)
            
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """

    return paddle.fluid.layers.gather_nd(input=x, index=index, name=name)