manipulation.py 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core, reshape
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25 26 27 28 29 30 31 32 33 34
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import expand_as  #DEFINE_ALIAS
from ..fluid.layers import reshape  #DEFINE_ALIAS
from ..fluid.layers import scatter  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unique  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

35 36 37 38 39
from ..fluid.layers import gather_nd  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd_add  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
40
from ..fluid import layers
41
import paddle
42

W
Wilber 已提交
43
__all__ = [
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    'cast',
    'concat',
    'expand',
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unique_with_counts',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
70
    'tile',
W
Wilber 已提交
71 72 73
]


74 75 76
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
77
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
78 79 80 81

    This OP concatenates the input along the axis.

    Args:
82 83
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
84 85 86 87
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
88 89 90 91
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Raises:
92 93
        TypeError: ``x`` must be list or tuple.
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32 and int64. 
94
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
95 96 97
        TypeError: All the Tensors in ``x`` must have the same data type.

    Returns:
98
        Tensor: A Tensor with the same data type as ``x``.
99 100 101 102 103 104 105

    Examples:
        .. code-block:: python
            
            import paddle
            import numpy as np
            
106
            paddle.disable_static()  # Now we are in imperative mode
107 108 109 110 111 112
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
113 114 115
            x1 = paddle.to_variable(in1)
            x2 = paddle.to_variable(in2)
            x3 = paddle.to_variable(in3)
116 117 118
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
119 120 121
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
122 123 124 125 126 127 128 129 130
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
131
    check_type(x, 'x', (list, tuple), 'concat')
132 133 134
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
135
def flip(x, axis, name=None):
W
Wilber 已提交
136
    """
137 138
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
139

W
Wilber 已提交
140

Y
yaoxuefeng 已提交
141
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
142 143

    Args:
Y
yaoxuefeng 已提交
144
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
145
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
146
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
147 148 149 150
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
151
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
152 153 154 155 156 157

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
158

159
          paddle.disable_static()
Y
yaoxuefeng 已提交
160 161 162 163

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
164
          img = paddle.to_variable(x)
Y
yaoxuefeng 已提交
165 166 167
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
168 169
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
170 171
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
172 173 174
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
175
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
176 177 178 179 180 181 182
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
183
        inputs={"X": x},
W
Wilber 已提交
184
        outputs={"Out": out},
Y
yaoxuefeng 已提交
185
        attrs={"axis": axis})
W
Wilber 已提交
186
    return out
187 188


Y
yaoxuefeng 已提交
189 190 191
reverse = flip  #DEFINE_ALIAS


192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of number of dimentions >= axis. A tensor with data type float32,
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
        Variable: A tensor with the contents of the input tensor, with input \
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
        ValueError: If x is not a Variable.
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

250
            paddle.disable_static()
251 252 253 254 255

            image_shape=(2, 3, 4, 4)
            x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100.
            x = x.astype('float32')
            
256
            img = paddle.to_variable(x)
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
300
def roll(x, shifts, axis=None, name=None):
301
    """
302 303
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
304

Y
yaoxuefeng 已提交
305 306 307
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
308 309 310
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
311
        x (Variable): The x tensor variable as input.
312
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
313 314
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
315 316

    Returns:
Y
yaoxuefeng 已提交
317
        Variable: A Tensor with same data type as `x`.
318 319 320 321 322 323 324 325 326 327

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data = np.array([[1.0, 2.0, 3.0],
                             [4.0, 5.0, 6.0],
                             [7.0, 8.0, 9.0]])
328 329
            paddle.disable_static()
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
330 331 332 333 334 335 336 337 338 339
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
340 341
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
342
    origin_shape = x.shape
343 344
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
358 359 360
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
361 362 363 364
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
365 366
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
367
    out = helper.create_variable_for_type_inference(x.dtype)
368

Y
yaoxuefeng 已提交
369 370 371
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
372 373 374

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
375
        inputs={'X': x},
376
        outputs={'Out': out},
Y
yaoxuefeng 已提交
377
        attrs={'axis': axis,
378 379 380
               'shifts': shifts})
    out = reshape(out, shape=origin_shape, inplace=True)
    return out
381 382


L
Leo Chen 已提交
383
def stack(x, axis=0, name=None):
384
    """
385
	:alias_main: paddle.stack
L
Leo Chen 已提交
386
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
387

L
Leo Chen 已提交
388 389 390 391 392 393 394
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
430
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
431 432 433 434 435 436 437 438

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
439 440
        x (Tensor|list[Tensor]): Input ``x`` can be a single tensor, or a ``list`` of tensors.
                                     If ``x`` is a ``list``, the Tensors in ``x``
441
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
442 443 444 445 446
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
447
    Returns:
L
Leo Chen 已提交
448
        Tensor: The stacked tensor with same data type as input.
449 450 451

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
452

453
            import paddle
L
Leo Chen 已提交
454
            import numpy as np
455 456 457 458 459

            data1 = np.array([[1.0, 2.0]])
            data2 = np.array([[3.0, 4.0]])
            data3 = np.array([[5.0, 6.0]])

460 461 462 463
            paddle.disable_static()
            x1 = paddle.to_variable(data1)
            x2 = paddle.to_variable(data2)
            x3 = paddle.to_variable(data3)
L
Leo Chen 已提交
464 465 466 467 468 469 470 471 472

            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
473 474


475
def split(x, num_or_sections, axis=0, name=None):
476
    """
477
	:alias_main: paddle.split
478 479
        :alias: paddle.tensor.split, paddle.tensor.manipulation.split
    
480
    Split the input tensor into multiple sub-Tensors.
481
    
482
    Args:
483 484 485 486 487 488 489 490 491 492 493
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
494
    Returns:
495
        list(Tensor): The list of segmented Tensors.
496
    Raises:
497 498 499
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``num_or_sections`` is not int, list or tuple.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
500 501
    Example:
        .. code-block:: python
502
            
503 504 505
            import numpy as np
            import paddle
            
506
            paddle.disable_static()
507 508
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
509
            x = paddle.to_variable(x_np)
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
532
    """
533 534
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
535 536


L
Leo Chen 已提交
537
def squeeze(x, axis=None, name=None):
538
    """
539
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
540
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
541

L
Leo Chen 已提交
542
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
543

L
Leo Chen 已提交
544 545 546
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
547 548 549 550 551 552

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
553 554
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
555
          Output:
L
Leo Chen 已提交
556
            out.shape = [3, 5]
557 558 559 560

        Case2:

          Input:
L
Leo Chen 已提交
561 562 563 564 565 566 567 568 569 570
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
571
          Output:
L
Leo Chen 已提交
572
            out.shape = [3, 5]
573

L
Leo Chen 已提交
574
        Case4:
575 576

          Input:
L
Leo Chen 已提交
577 578
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
579
          Output:
L
Leo Chen 已提交
580
            out.shape = [1, 3, 5]
581 582

    Args:
583
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
584
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
585 586 587
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
588 589 590
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
591
        Tensor: Squeezed Tensor with the same data type as input Tensor.
592 593 594

    Examples:
        .. code-block:: python
595

596 597
            import paddle

598
            paddle.disable_static()
L
Leo Chen 已提交
599 600 601 602
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
603 604

    """
L
Leo Chen 已提交
605 606 607 608 609 610
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
611

L
Leo Chen 已提交
612
    return layers.squeeze(x, axis, name)
613 614


615
def unsqueeze(x, axis, name=None):
616
    """
617
	:alias_main: paddle.unsqueeze
618
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
619

620 621 622
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
623 624

    Args:
625 626 627 628 629 630
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
631 632

    Returns:
633
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
634 635 636

    Examples:
        .. code-block:: python
637

638 639
            import paddle

640
            paddle.disable_static()
641 642 643 644 645 646 647 648
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
649

650 651 652 653
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
654
    """
655 656
    if isinstance(axis, int):
        axis = [axis]
657

658
    return layers.unsqueeze(x, axis, name)
659 660 661 662


def gather(input, index, overwrite=True):
    """
663 664
	:alias_main: paddle.gather
	:alias: paddle.gather,paddle.tensor.gather,paddle.tensor.manipulation.gather
S
swtkiwi 已提交
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    **Gather Layer**

    Output is obtained by gathering entries of the outer-most dimension
    of X indexed by `index` and concatenate them together.

    .. math::

        Out = X[Index]


    .. code-block:: text


                Given:

                X = [[1, 2],
                     [3, 4],
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]
    Args:
        input (Variable): The source input tensor with rank>=1. Supported data type is
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
            if False, use the accumulate mode to update the grad of the same index.
            Default value is True.



    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid


            with fluid.dygraph.guard():
                input_1 = np.array([[1,2],[3,4],[5,6]])
                index_1 = np.array([0,1])
                input = fluid.dygraph.to_variable(input_1)
                index = fluid.dygraph.to_variable(index_1)
                output = paddle.gather(input, index)
                # expected output: [[1,2],[3,4]]
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
    return out
myq406450149's avatar
myq406450149 已提交
733 734 735 736


def unbind(input, axis=0):
    """
737 738
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
739

myq406450149's avatar
myq406450149 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893


def tile(x, repeat_times, name=None):
    """
    :alias_main: paddle.tile
	:alias: paddle.tile,paddle.tensor.tile,paddle.tensor.manipulation.tile
    Construct a new tensor by repeating ``x`` the number of times given by the parameter ``repeat_times``.
    The rank of ``x`` should be less than or equal to 6, and the size of the shape of ``repeat_times`` should
    be less than or equal to 6.
    If the size of the parameter ``repeat_times`` is ``d``, and the rank for ``x`` is ``r``, then the number
    of dimensions for the result is ``max(d, r)``.
    If ``r < d``, ``x`` if first promoted to a d-dimensional tensor by inserting new axes at the beginning.
    For example, a tensor ``x`` with the shape(3,) is promoted to a 2-D tensor with the shape (1, 3) if ``d`` is 2
    and a 3-D tensor with the shape(1, 1, 3) if ``d`` is 3.
    If ``r > d``, ``repeat_times`` is first promoted by inserting 1's at the beginning.
    For example, if the tensor ``x`` is with a shape(4, 3, 2, 2) and ``repeat_times`` is a tuple (3, 2),
    ``repeat_times`` is first promoted to a tuple (1, 1, 3, 2).
    The following gives an using case:
    .. code-block:: text
        Input(x) is a 3-D tensor of shape (2, 3, 1):
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        Attr(repeat_times):  [1, 2, 2]
        Output(out) is a 3-D tensor of shape (2, 6, 2):
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
    Args:
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32. The rank of ``x`` should be in [1, 6].
        repeat_times (Tensor|tuple|list): The number of repeating times for each dimension of the input ``x``. If repeat_times is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If repeat_times is Tensor, it should be an 1-D Tensor. The size of its shape should be in [1, 6].
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        N-D Tensor. The data type is the same as ``x``. After tiling, each dimension of the output is equal to the corresponding dimension of ``x`` multiplying the corresponding value given by ``repeat_times`` .
    Raises:
        TypeError: The type of ``repeat_times`` must be list, tuple or Tensor.
        ValueError: The elements of ``repeat_times`` cannot be negative.
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            paddle.disable_static()
            # example 1:
            np_data_1 = np.array([1, 2, 3]).astype('int32')
            data_1 = paddle..to_variable(np_data_1)
            tiled_1 = paddle.tile(data_1, repeat_times=[2, 1])
            # [[1, 2, 3], [1, 2, 3]]
            # example 2:
            np_repeat_times = np.array([2, 1]).astype("int32")
            repeat_times = paddle.to_variable(np_repeat_times)
            tiled_2 = paddle.tile(data_1, repeat_times=repeat_times)
            # [[1, 2, 3], [1, 2, 3]]
    """
    if in_dygraph_mode():
        if isinstance(repeat_times, (list, tuple)):
            repeat_times = [
                item.numpy()[0] if isinstance(item, Variable) else item
                for item in repeat_times
            ]

            return core.ops.tile(x, 'repeat_times', repeat_times)

    inputs = {"X": [x]}
    attrs = {}
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
            "must set its stop_gradient to be False by "
            "some_var.stop_gradient == True supporting some_var is the input.")

    helper = LayerHelper('tile', input=x, **locals())

    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
                    "Every element given in repeat_times must be positive.")
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
        attrs['repeat_times'] = [-1] * len(repeat_times.shape)
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985


def expand(x, shape, name=None):
    """
    :alias_main: paddle.expand
    :alias: paddle.expand,paddle.tensor.expand,paddle.tensor.manipulation.expand

    Expand the input tensor to a given shape.

    The rank of ``x`` should be less than or equal to 6, and the number of elements in ``shape`` should also be less than or equal to 6. The size of the dimension to expand must be 1. 


    Args:
        x (Tensor): The input Tensor with rank in [1, 6]. The data type is bool, float32, float64 or int32.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all elements of
                it should be integers or Tensors with shape (1,). If shape is a Tensor, it should be an 1-D Tensor. 
                The value -1 in shape, means keeping the corresponding dimension unchanged.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A Tensor with the given shape. The data type is the same as ``x``.

    Raises:
        TypeError: The type of ``shape`` must be list, tuple or Variable.
        ValueError: The elements of ``shape`` must be positive or -1.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            paddle.disable_static()

            # example 1:
            np_data_1 = np.array([1, 2, 3]).astype=('int32)
            data_1 = paddle.to_variable(np_data_1)
            expanded_1 = paddle.expand(data_1, shape=[2, 3])
            # [[1, 2, 3], [1, 2, 3]]

            # example 2:
            np_shape = np.array([2, 3]).astype=('int32)
            shape = paddle.to_variable(np_shape)
            expanded_2 = paddle.expand(data_1, shape=shape)
            # [[1, 2, 3], [1, 2, 3]]
    """
    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
            expand_shape = [
                item.numpy()[0] if isinstance(item, Variable) else item
                for item in shape
            ]

            return core.ops.expand_v2(x, 'shape', expand_shape)

    inputs = {"X": [x]}
    attrs = {}
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
                         " some_var.stop_gradient = False, supporting "
                         "some_var as the input.")

    helper = LayerHelper('expand', input=x, **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
                    "Every element in shape must be positive or -1.")
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out