Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
34a256c9
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
34a256c9
编写于
3月 21, 2022
作者:
N
Nyakku Shigure
提交者:
GitHub
3月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix paddle.tile en docs, test=document_fix (#40731)
上级
c54c60de
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
9 addition
and
7 deletion
+9
-7
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+9
-7
未找到文件。
python/paddle/tensor/manipulation.py
浏览文件 @
34a256c9
...
...
@@ -1732,12 +1732,12 @@ def tile(x, repeat_times, name=None):
Args:
x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
repeat_times (
Tensor|tuple|list
): The number of repeating times. If repeat_times is a list or tuple, all its elements
repeat_times (
list|tuple|Tensor
): The number of repeating times. If repeat_times is a list or tuple, all its elements
should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
N-D Tensor. The data type is the same as ``x``.
N-D Tensor. The data type is the same as ``x``.
The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
Examples:
.. code-block:: python
...
...
@@ -1747,16 +1747,18 @@ def tile(x, repeat_times, name=None):
data = paddle.to_tensor([1, 2, 3], dtype='int32')
out = paddle.tile(data, repeat_times=[2, 1])
np_out = out.numpy()
# [[1, 2, 3], [1, 2, 3]]
# [[1, 2, 3]
# [1, 2, 3]]
out = paddle.tile(data, repeat_times=
[2, 2]
)
out = paddle.tile(data, repeat_times=
(2, 2)
)
np_out = out.numpy()
# [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]
# [[1, 2, 3, 1, 2, 3]
# [1, 2, 3, 1, 2, 3]]
repeat_times = paddle.to_tensor([
2, 1
], dtype='int32')
repeat_times = paddle.to_tensor([
1, 2
], dtype='int32')
out = paddle.tile(data, repeat_times=repeat_times)
np_out = out.numpy()
# [[1, 2, 3
], [
1, 2, 3]]
# [[1, 2, 3
,
1, 2, 3]]
"""
if
paddle
.
in_dynamic_mode
():
return
_C_ops
.
tile
(
x
,
'repeat_times'
,
repeat_times
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录