nn.py 195.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#   Copyright (c ) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
16
#
D
dzhwinter 已提交
17 18 19
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
20
#
D
dzhwinter 已提交
21
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
22
#
D
dzhwinter 已提交
23 24 25 26 27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
28
"""
29
All layers just related to the neural network.
Y
Yu Yang 已提交
30 31 32 33 34
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
35
from ..param_attr import ParamAttr
Y
yuyang18 已提交
36
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
37
from tensor import concat
C
chengduoZH 已提交
38
import utils
Y
yuyang18 已提交
39
import random
F
fengjiayi 已提交
40
from .. import unique_name
Y
Yu Yang 已提交
41 42

__all__ = [
Y
ying 已提交
43 44 45
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
46
    'dynamic_lstmp',
G
guosheng 已提交
47
    'dynamic_gru',
Y
ying 已提交
48 49 50 51 52 53 54 55 56
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
57
    'conv3d',
Y
ying 已提交
58
    'sequence_pool',
59 60
    'sequence_softmax',
    'softmax',
Y
ying 已提交
61
    'pool2d',
Y
yuyang18 已提交
62
    'pool3d',
Y
ying 已提交
63 64 65
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
66
    'conv3d_transpose',
Y
ying 已提交
67 68 69 70 71 72
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
73
    'reduce_prod',
Y
ying 已提交
74 75 76 77
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
78 79
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
80 81
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
82
    'topk',
Y
ying 已提交
83 84
    'warpctc',
    'sequence_reshape',
85
    'transpose',
86
    'im2sequence',
87
    'nce',
W
weixing02 已提交
88
    'hsigmoid',
Q
Qiao Longfei 已提交
89
    'beam_search',
90
    'row_conv',
91
    'multiplex',
G
guosheng 已提交
92
    'layer_norm',
93 94
    'softmax_with_cross_entropy',
    'smooth_l1',
95
    'one_hot',
Y
Yu Yang 已提交
96
    'autoincreased_step_counter',
C
caoying03 已提交
97
    'reshape',
Y
yangyaming 已提交
98
    'lod_reset',
D
dragonwarrior 已提交
99
    'lrn',
G
guosheng 已提交
100
    'pad',
101
    'label_smooth',
102
    'roi_pool',
W
whs 已提交
103
    'dice_loss',
F
fengjiayi 已提交
104 105
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
106
    'resize_bilinear',
W
whs 已提交
107
    'gather',
108
    'random_crop',
Y
yuyang18 已提交
109 110 111
    'mean_iou',
    'relu',
    'log',
112
    'crop',
113
    'rank_loss',
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
122
       use_mkldnn=False,
Y
Yu Yang 已提交
123
       act=None,
J
Jacek Czaja 已提交
124
       is_test=False,
125
       name=None):
Y
Yu Yang 已提交
126
    """
127
    **Fully Connected Layer**
Y
Yu Yang 已提交
128

129 130 131 132 133 134 135 136
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
137
    to the output as well.
C
caoying03 已提交
138

C
caoying03 已提交
139
    This process can be formulated as follows:
140 141 142

    .. math::

143
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
144 145 146

    In the above equation:

C
caoying03 已提交
147 148 149 150
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
151
    * :math:`Act`: The activation function.
C
caoying03 已提交
152
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
153 154

    Args:
R
ranqiu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
170 171
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
172
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
173
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
174 175
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
176
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
177

178
    Returns:
F
fengjiayi 已提交
179
        Variable: The transformation result.
180 181

    Raises:
C
caoying03 已提交
182
        ValueError: If rank of the input tensor is less than 2.
183 184 185 186

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
187
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
188
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
189
    """
C
caoying03 已提交
190

C
caoying03 已提交
191
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
192 193 194 195

    dtype = helper.input_dtype()

    mul_results = []
196 197
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
198 199 200
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
201

Y
Yu Yang 已提交
202
        w = helper.create_parameter(
203 204
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
205
        helper.append_op(
206 207 208
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
209
            outputs={"Out": tmp},
M
mozga-intel 已提交
210 211
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
212 213 214 215
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
216
    else:
217 218
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
219 220 221 222
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
223 224 225 226
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
227 228


229 230 231
def embedding(input,
              size,
              is_sparse=False,
232
              is_distributed=False,
233 234 235
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
236
    """
237 238
    **Embedding Layer**

239
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
240 241
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
242 243 244

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
245 246

    Args:
247 248 249 250 251
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
252
        is_distributed(bool): Whether to run lookup table from remote parameter server.
253 254
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
255
            with zeros whenever lookup encounters it in :attr:`input`. If
256
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
257 258
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
259
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
260

261 262 263
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
264

265 266
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
267

C
chengduoZH 已提交
268
          dict_size = len(dataset.ids)
269
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
270
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
271 272 273 274 275 276
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
277 278
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
279 280 281 282 283
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
284 285 286 287 288
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
289 290 291
    return tmp


Y
yi.wu 已提交
292
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
293 294
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
295 296
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
297 298 299 300 301 302 303
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
304 305
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
306
    """
Y
yi.wu 已提交
307
    ${comment}
Y
Yibing Liu 已提交
308 309

    Args:
Y
yi.wu 已提交
310 311
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
312 313 314 315 316 317 318
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

319
        param_attr(ParamAttr|None): The parameter attribute for the learnable
320
                               hidden-hidden weights.
Y
Yibing Liu 已提交
321 322 323

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
324 325
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
326
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
327 328 329
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
330

331
                              1. `use_peepholes = False`
Y
yi.wu 已提交
332 333
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
334
                              2. `use_peepholes = True`
Y
yi.wu 已提交
335
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
336
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
337
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
338 339 340 341 342 343 344 345
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
346 347

    Returns:
Y
Yibing Liu 已提交
348 349
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
350

Y
Yibing Liu 已提交
351
    Examples:
Y
Yibing Liu 已提交
352 353
        .. code-block:: python

Y
Yibing Liu 已提交
354 355
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
356
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
357 358
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
359
    """
360

Y
Yu Yang 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
375 376 377 378 379 380 381 382 383 384
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
385 386 387

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
388
        inputs=inputs,
Y
Yu Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
405 406 407 408 409 410 411 412 413 414 415
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
416 417
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
418 419 420
    """
    **Dynamic LSTMP Layer**

421 422 423 424 425 426
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
427 428 429 430 431

    The formula is as follows:

    .. math::

432
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
433

434
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
435

436
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
437

438
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
439

440
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
441

442
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
443

444
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
445

Y
Yibing Liu 已提交
446 447 448 449 450 451
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
452
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
453
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
454
          bias vector).
Y
Yibing Liu 已提交
455 456 457
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
458
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
459
    * :math:`h`: The hidden state.
460
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
461 462
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
463
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
464
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
465
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
466 467
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
468 469 470 471

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
472

Y
Yibing Liu 已提交
473 474 475 476 477 478 479 480 481 482 483 484
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
485
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
486 487
                               hidden-hidden weight and projection weight.

488 489
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
490 491
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
492 493
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
494 495
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
496 497 498 499 500 501
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
502
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
503 504 505
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
506
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
507 508 509 510 511 512 513 514 515
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
516
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
517 518
                              default "tanh".
        proj_activation(str): The activation for projection output.
519
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
520 521
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
522 523
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
524 525

    Returns:
526 527 528 529
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
530 531

    Examples:
532

Y
Yibing Liu 已提交
533 534
        .. code-block:: python

535 536 537 538
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
539
            hidden_dim, proj_dim = 512, 256
540
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
541
                                     act=None, bias_attr=None)
542 543 544
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
545 546 547 548
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
549
    """
550

Y
Yibing Liu 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
597 598 599 600 601 602 603 604 605
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
606
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
607

608
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
609
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
610

G
guosheng 已提交
611 612 613 614 615 616 617 618 619
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
620

G
guosheng 已提交
621
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
622

G
guosheng 已提交
623
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
624 625
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
626 627 628 629
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
630
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
631 632

    Args:
633 634
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
635
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
636
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
637 638
            is the hidden size.
        size(int): The dimension of the gru cell.
639
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
640 641
            hidden-hidden weight matrix. Note:

642
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
643
              :math:`D` is the hidden size.
644
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
645
              The first part are weights of the update gate and reset gate with
646
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
647
              candidate hidden state with shape :math:`(D \\times D)`.
648
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
649
            hidden-hidden bias.
650
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
651 652 653
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
654
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
655
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
656 657 658 659
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
660 661

    Returns:
G
guosheng 已提交
662
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
663
            and sequence length is the same with the input.
664

G
guosheng 已提交
665
    Examples:
666

G
guosheng 已提交
667 668
        .. code-block:: python

669 670 671 672
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
673
            hidden_dim = 512
674
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
675 676 677 678 679 680 681 682 683 684
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
685
    batch_size = input.shape[0]
G
guosheng 已提交
686 687 688
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
689 690 691
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
715 716 717
def gru_unit(input,
             hidden,
             size,
718 719
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
720
             activation='tanh',
721
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
722
    """
723
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
724

725 726
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
727

728
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
729

730
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
731

732
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
733 734

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
735 736 737
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
738 739
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

740 741
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
742 743 744
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
745 746 747 748 749

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
750 751
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
752 753 754 755
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
756

757 758 759 760 761 762
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
763

764
             # assuming we have x_t_data and prev_hidden of size=10
765
             x_t = fluid.layers.fc(input=x_t_data, size=30)
766 767
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
783 784
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
785

786 787 788 789
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
790
    # create bias
791
    if helper.bias_attr:
Y
Yu Yang 已提交
792 793 794
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
795
        inputs['Bias'] = bias
Y
Yu Yang 已提交
796 797 798

    helper.append_op(
        type='gru_unit',
799
        inputs=inputs,
Y
Yu Yang 已提交
800 801 802 803 804 805
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
806 807
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
808 809 810 811 812
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
813
@templatedoc()
814
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
815 816 817 818 819 820 821
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
822
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
823 824 825 826
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
827 828 829
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
830 831

    """
Y
Yu Yang 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
857
@templatedoc()
858
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
859 860 861 862 863
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
864

Y
yuyang18 已提交
865
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
866

Y
yuyang18 已提交
867 868 869
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
870
        Variable: ${viterbi_path_comment}
871

Y
yi.wu 已提交
872 873 874 875 876
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
877
    """
Y
Yu Yang 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
891
@templatedoc()
F
fengjiayi 已提交
892
def cos_sim(X, Y):
Y
Yu Yang 已提交
893
    """
Y
yi.wu 已提交
894 895 896
    ${comment}

    Args:
897 898
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
899

Y
yi.wu 已提交
900
    Returns:
901
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
902
    """
F
fengjiayi 已提交
903
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


917
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
918 919 920 921 922
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
923
    training. The dropout operator randomly sets (according to the given dropout
924 925 926 927
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
928 929
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
930 931 932 933 934 935 936
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
937 938

    Returns:
939
        Variable: A tensor variable is the shape with `x`.
940 941

    Examples:
942

943 944
        .. code-block:: python

945 946
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
947 948
    """

F
fengjiayi 已提交
949
    helper = LayerHelper('dropout', **locals())
950 951 952 953 954 955 956
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
957 958 959 960 961 962
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
963 964 965
    return out


F
fengjiayi 已提交
966
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
967
    """
Y
Yibing Liu 已提交
968 969
    **Cross Entropy Layer**

970 971 972
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
973 974

    1) One-hot cross-entropy:
F
fengjiayi 已提交
975
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
976

Y
Yibing Liu 已提交
977
        .. math::
Y
yangyaming 已提交
978

Y
Yibing Liu 已提交
979 980 981
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
982 983
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
984 985 986 987 988

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
989
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
990 991 992
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
993 994
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
995
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
996

Y
Yibing Liu 已提交
997
    Args:
Y
yangyaming 已提交
998
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
999 1000 1001 1002
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1003
        label (Variable|list): the ground truth which is a 2-D tensor. When
1004 1005 1006 1007
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1008
        soft_label (bool): a flag indicating whether to
1009 1010
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1011 1012 1013 1014 1015

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1016 1017 1018 1019 1020
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1021 1022 1023 1024 1025 1026

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1027
    """
F
fengjiayi 已提交
1028
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1029 1030 1031 1032 1033 1034
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1035
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1036 1037 1038
    return out


F
fengjiayi 已提交
1039
def square_error_cost(input, label):
Y
Yu Yang 已提交
1040
    """
1041 1042
    **Square error cost layer**

1043 1044
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1059 1060
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1061 1062

    Returns:
G
guosheng 已提交
1063
        Variable: The tensor variable storing the element-wise squared error \
1064
                  difference of input and label.
1065 1066 1067 1068 1069 1070 1071 1072

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1073
    """
F
fengjiayi 已提交
1074
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1084 1085
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1086 1087 1088
    return square_out


Y
yi.wu 已提交
1089
@templatedoc()
Y
Yu Yang 已提交
1090 1091 1092 1093
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1094
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1095
    """
Y
yi.wu 已提交
1096
    **Chunk Evaluator**
Y
yi.wu 已提交
1097

Y
yangyaming 已提交
1098
    This function computes and outputs the precision, recall and
1099
    F1-score of chunk detection.
Y
yi.wu 已提交
1100

Y
yi.wu 已提交
1101 1102 1103 1104 1105 1106 1107 1108
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1109

Y
yi.wu 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1135

Y
yi.wu 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1160
    Args:
1161 1162 1163 1164 1165
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1166

Y
yi.wu 已提交
1167
    Returns:
Y
update  
yi.wu 已提交
1168 1169 1170
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1171

Y
yi.wu 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1184
    """
F
fengjiayi 已提交
1185
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1186 1187 1188 1189 1190

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1191 1192 1193
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1194 1195 1196 1197 1198 1199 1200 1201

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1202 1203 1204 1205
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1206 1207 1208
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1209 1210
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1211
        })
1212 1213
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1214 1215


1216
@templatedoc()
Y
Yu Yang 已提交
1217 1218 1219 1220 1221 1222 1223
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1224
                  act=None):
Y
Yu Yang 已提交
1225 1226 1227 1228
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1239

1240 1241
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1267
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1268 1269 1270
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1271
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1314
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1315
    """
F
fengjiayi 已提交
1316 1317
    The input of the softmax operator is a tensor of any rank. The output tensor 
    has the same shape as the input.
Q
qiaolongfei 已提交
1318

F
fengjiayi 已提交
1319 1320 1321 1322 1323 1324 1325
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's 
    second dimension(row length) is as same as the last dimension of the input 
    tensor, and the first dimension(column length) is the product of all other 
    dimensions of the input tensor. For each row of the matrix, the softmax operator 
    squashes the K-dimensional(K is the width of the matrix, which is also the size 
    of the input tensor's last dimension) vector of arbitrary real values to a 
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1326 1327 1328 1329 1330 1331 1332

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1333
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1368 1369 1370
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1371 1372
           stride=1,
           padding=0,
1373
           dilation=1,
Y
Yu Yang 已提交
1374 1375 1376
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1377
           use_cudnn=True,
1378
           use_mkldnn=False,
1379 1380
           act=None,
           name=None):
Y
Yu Yang 已提交
1381
    """
C
chengduoZH 已提交
1382
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1383 1384
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1385
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1386 1387 1388 1389 1390 1391 1392
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1393 1394 1395
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1396

1397
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1398

C
chengduoZH 已提交
1399 1400
    .. math::

C
refine  
chengduoZH 已提交
1401
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1402

T
tensor-tang 已提交
1403
    Where:
C
chengduoZH 已提交
1404

1405 1406 1407 1408 1409
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1410
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1411 1412 1413

    Example:

1414 1415
        - Input:

W
weixing02 已提交
1416
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1417

W
weixing02 已提交
1418
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1419

1420
        - Output:
T
tensor-tang 已提交
1421

W
weixing02 已提交
1422
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1423

C
chengduoZH 已提交
1424
        Where
1425 1426

        .. math::
C
chengduoZH 已提交
1427

W
weixing02 已提交
1428 1429
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1430 1431

    Args:
1432
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1433
        num_filters(int): The number of filter. It is as same as the output
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1456 1457
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1458 1459 1460
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1461 1462

    Returns:
G
guosheng 已提交
1463
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1464 1465
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1466
    Raises:
1467 1468
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1469

C
chengduoZH 已提交
1470 1471 1472
    Examples:
        .. code-block:: python

1473 1474
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1475 1476 1477
    """

    num_channels = input.shape[1]
1478 1479

    l_type = 'conv2d'
X
xzl 已提交
1480 1481
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1482
        l_type = 'depthwise_conv2d'
1483 1484 1485 1486

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1487 1488 1489 1490 1491 1492 1493
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1494 1495 1496
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1497
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1498

C
chengduoZH 已提交
1499 1500
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1518
        type=l_type,
Y
Yu Yang 已提交
1519 1520 1521 1522 1523
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1524 1525 1526
        attrs={
            'strides': stride,
            'paddings': padding,
1527
            'dilations': dilation,
C
chengduoZH 已提交
1528
            'groups': groups,
1529 1530
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1531
        })
Y
Yu Yang 已提交
1532 1533 1534 1535 1536 1537

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1556 1557 1558 1559 1560 1561
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1571 1572
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1573 1574 1575
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1576
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1602
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1603 1604
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1605
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1606 1607
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1608
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1609 1610
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1611
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1638 1639
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1695
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1696 1697 1698 1699

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1700
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1701
    """
Y
yangyaming 已提交
1702 1703 1704
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1716
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1717 1718 1719 1720 1721
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1722
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1723 1724 1725 1726 1727 1728 1729

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1730 1731
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1732

L
Luo Tao 已提交
1733 1734
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1735
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1736 1737 1738 1739 1740 1741 1742 1743
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1744

Y
yangyaming 已提交
1745
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1746 1747 1748 1749 1750
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1751 1752
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1753
    """
F
fengjiayi 已提交
1754
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1766 1767 1768 1769 1770
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1771 1772 1773
    return pool_out


F
fengjiayi 已提交
1774
def sequence_first_step(input):
L
Luo Tao 已提交
1775
    """
L
Luo Tao 已提交
1776
    This function gets the first step of sequence.
L
Luo Tao 已提交
1777 1778 1779 1780

    .. code-block:: text

       x is a 1-level LoDTensor:
1781
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1782 1783 1784 1785 1786
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1787
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1788
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1789

L
Luo Tao 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1799

Y
yangyaming 已提交
1800
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1801 1802 1803
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1804 1805 1806
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1807
def sequence_last_step(input):
L
Luo Tao 已提交
1808
    """
L
Luo Tao 已提交
1809
    This function gets the last step of sequence.
L
Luo Tao 已提交
1810 1811 1812 1813

    .. code-block:: text

       x is a 1-level LoDTensor:
1814
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1815 1816 1817 1818 1819
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1820
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1821
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1822

L
Luo Tao 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1832

Y
yangyaming 已提交
1833
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1834 1835 1836
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1837 1838 1839
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1840
@templatedoc()
Y
Yu Yang 已提交
1841
def pool2d(input,
C
chengduoZH 已提交
1842 1843
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1844 1845
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1846
           global_pooling=False,
C
chengduoZH 已提交
1847
           use_cudnn=True,
1848
           ceil_mode=False,
1849
           use_mkldnn=False,
C
caoying03 已提交
1850
           name=None):
Y
Yu Yang 已提交
1851
    """
F
fengjiayi 已提交
1852
    ${comment}
1853 1854

    Args:
1855 1856 1857
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1858
                          feature, and W is the width of the feature.
1859
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1860
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1861
        pool_type: ${pooling_type_comment}
1862 1863
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1864 1865 1866 1867
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1868
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1869 1870
                        layer will be named automatically.

1871
    Returns:
F
fengjiayi 已提交
1872
        Variable: The pooling result.
F
fengjiayi 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1886 1887 1888 1889
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1890
                            global_pooling=False)
Y
Yu Yang 已提交
1891 1892 1893 1894 1895
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1896

C
chengduoZH 已提交
1897 1898 1899 1900 1901
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1902 1903 1904 1905
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1906 1907
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1908

C
Add doc  
chengduoZH 已提交
1909
    l_type = 'pool2d'
1910 1911

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1912 1913 1914 1915
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1945
    pooling configurations mentioned in input parameters.
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1959

1960
    Returns:
1961
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1962 1963 1964 1965 1966
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1967

C
chengduoZH 已提交
1968 1969 1970 1971 1972
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1973 1974 1975
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1976

C
chengduoZH 已提交
1977 1978
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1979

1980 1981
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1982 1983 1984 1985
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1986
        type=l_type,
Y
Yu Yang 已提交
1987 1988 1989 1990 1991 1992 1993
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1994
            "paddings": pool_padding,
1995
            "use_cudnn": use_cudnn,
1996 1997
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2010
               data_layout='NCHW',
Y
Yang Yang 已提交
2011
               in_place=False,
2012
               use_mkldnn=False,
2013 2014
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2015
               moving_variance_name=None,
2016 2017
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2018
    """
Q
qiaolongfei 已提交
2019 2020 2021 2022
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2023

Q
qiaolongfei 已提交
2024
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2025

Q
qiaolongfei 已提交
2026 2027
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2028 2029 2030
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2043 2044

    Args:
Q
qiaolongfei 已提交
2045
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2046 2047 2048 2049
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2050 2051 2052
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2053
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2054 2055 2056 2057 2058
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2059
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2060
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2061 2062

    Returns:
Q
qiaolongfei 已提交
2063
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2064 2065 2066 2067 2068 2069 2070

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2094
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2095

2096 2097
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2098 2099 2100
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2101
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2102
        shape=param_shape,
2103 2104 2105 2106 2107 2108 2109
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2110
            trainable=False,
W
wanghaoshuang 已提交
2111
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2112
        shape=param_shape,
2113 2114
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2115 2116 2117 2118 2119 2120

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2121 2122
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2123

Y
Yang Yang 已提交
2124
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2142 2143 2144 2145
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2146 2147
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2148
        })
Y
Yu Yang 已提交
2149 2150 2151 2152

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2153
@templatedoc()
G
guosheng 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2164
    ${comment}
G
guosheng 已提交
2165 2166 2167

    The formula is as follows:

Y
yuyang18 已提交
2168
    ..  math::
G
guosheng 已提交
2169 2170 2171 2172 2173 2174 2175

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2176 2177 2178 2179 2180 2181 2182 2183
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2184

G
guosheng 已提交
2185 2186
    Args:
        input(Variable): The input tensor variable.
2187
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2188
            normalization.
2189
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2190
            normalization.
2191
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2192
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2193
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2194 2195 2196 2197 2198 2199
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2200
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2201 2202

    Returns:
Y
yuyang18 已提交
2203
        ${y_comment}
G
guosheng 已提交
2204 2205 2206

    Examples:

Y
yuyang18 已提交
2207 2208 2209
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2225
    if shift:
G
guosheng 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2250 2251 2252 2253
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2254 2255 2256
                     padding=0,
                     stride=1,
                     dilation=1,
2257
                     groups=None,
C
caoying03 已提交
2258
                     param_attr=None,
2259
                     bias_attr=None,
C
chengduoZH 已提交
2260
                     use_cudnn=True,
2261
                     act=None,
C
caoying03 已提交
2262
                     name=None):
Y
Yu Yang 已提交
2263
    """
2264 2265 2266 2267 2268 2269 2270 2271
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2272 2273
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2274 2275 2276
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2277 2278 2279 2280 2281

    For each input :math:`X`, the equation is:

    .. math::

2282
        Out = \sigma (W \\ast X + b)
2283

2284
    Where:
2285 2286 2287

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2288 2289 2290 2291
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2292

2293 2294 2295 2296
    Example:

        - Input:

2297
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2298

2299
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2300 2301 2302

        - Output:

2303
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2304 2305

        Where
Y
Yu Yang 已提交
2306

2307 2308 2309 2310
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2311 2312

    Args:
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2346 2347

    Returns:
2348
        Variable: The tensor variable storing the convolution transpose result.
2349 2350

    Raises:
2351 2352
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2353 2354 2355 2356

    Examples:
       .. code-block:: python

2357 2358
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2359
    """
2360 2361 2362 2363 2364 2365 2366 2367 2368

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2369 2370 2371
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2372 2373 2374
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2375

C
chengduoZH 已提交
2376 2377
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2378

Y
Yu Yang 已提交
2379 2380 2381 2382 2383
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2384

Y
Yu Yang 已提交
2385 2386
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2387

C
chengduoZH 已提交
2388 2389 2390 2391
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2392
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2393 2394 2395
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2396

2397 2398
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2399 2400 2401
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2402
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2403
    helper.append_op(
2404
        type=op_type,
Y
Yu Yang 已提交
2405 2406
        inputs={'Input': [input],
                'Filter': [img_filter]},
2407
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2408
        attrs={
2409 2410 2411 2412 2413
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2414 2415
        })

2416 2417 2418
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2419 2420


2421
def conv3d_transpose(input,
Y
Yu Yang 已提交
2422 2423 2424
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2425 2426 2427
                     padding=0,
                     stride=1,
                     dilation=1,
2428
                     groups=None,
C
caoying03 已提交
2429
                     param_attr=None,
2430
                     bias_attr=None,
C
chengduoZH 已提交
2431
                     use_cudnn=True,
2432
                     act=None,
C
caoying03 已提交
2433
                     name=None):
Y
Yu Yang 已提交
2434
    """
2435
    **Convlution3D transpose layer**
2436

2437
    The convolution3D transpose layer calculates the output based on the input,
2438
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2439 2440 2441 2442 2443 2444
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2445 2446 2447
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2448 2449 2450 2451 2452

    For each input :math:`X`, the equation is:

    .. math::

2453
        Out = \sigma (W \\ast X + b)
2454 2455 2456

    In the above equation:

2457 2458
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2459 2460 2461 2462
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2463

2464 2465 2466 2467
    Example:

        - Input:

2468
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2469

2470
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2471 2472 2473

        - Output:

2474
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2475 2476

        Where
Y
Yu Yang 已提交
2477

2478 2479
        .. math::

2480 2481 2482
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2483 2484

    Args:
2485
        input(Variable): The input image with [N, C, D, H, W] format.
2486 2487 2488
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2489
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2490 2491
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2492
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2493 2494 2495
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2496 2497
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2498
        stride(int|tuple): The stride size. If stride is a tuple, it must
2499 2500
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2501
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2502 2503 2504
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2505 2506 2507 2508 2509
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2510 2511 2512
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2513 2514 2515 2516 2517
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2518 2519

    Returns:
2520
        Variable: The tensor variable storing the convolution transpose result.
2521 2522

    Raises:
2523 2524
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2525 2526 2527 2528

    Examples:
       .. code-block:: python

2529 2530
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2531
    """
2532 2533
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2534
    if not isinstance(input, Variable):
2535
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2536 2537
    input_channel = input.shape[1]

2538 2539 2540
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2541

C
chengduoZH 已提交
2542 2543 2544
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2545 2546 2547 2548 2549 2550
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2551 2552 2553
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2554

2555
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2556
                         padding[0] - 1) / dilation[0] + 1
2557
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2558
                         padding[1] - 1) / dilation[1] + 1
2559 2560 2561
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2562
    else:
2563 2564
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2565

2566 2567
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2568 2569 2570
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2571
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2572
    helper.append_op(
2573
        type=l_type,
Y
Yu Yang 已提交
2574 2575
        inputs={'Input': [input],
                'Filter': [img_filter]},
2576
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2577 2578 2579 2580
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2581
            'groups': groups,
C
chengduoZH 已提交
2582 2583
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2584

2585 2586
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2587
    return out
Y
yangyaming 已提交
2588 2589


Y
yangyaming 已提交
2590
def sequence_expand(x, y, ref_level=-1, name=None):
2591
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2592 2593 2594 2595
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2596 2597 2598 2599 2600

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2601
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2602
                x.data = [[a], [b], [c], [d]]
2603 2604 2605
                x.dims = [4, 1]

            y is a LoDTensor:
2606 2607
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2608

Y
yangyaming 已提交
2609
            ref_level: 0
2610

Y
yangyaming 已提交
2611
            then output is a 1-level LoDTensor:
2612
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2613
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2614 2615 2616 2617
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2618
                x.data = [[a], [b], [c]]
2619 2620 2621
                x.dims = [3, 1]

            y is a LoDTensor:
2622
                y.lod = [[2, 0, 3]]
2623

Y
yangyaming 已提交
2624
            ref_level: -1
2625

Y
yangyaming 已提交
2626 2627 2628
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2629 2630 2631
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2632 2633
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2634
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2635
                        will be named automatically.
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2646
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2647
    """
Y
yangyaming 已提交
2648
    helper = LayerHelper('sequence_expand', input=x, **locals())
2649 2650 2651
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2652 2653 2654 2655 2656
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2657
    return tmp
2658 2659


2660 2661 2662 2663 2664 2665 2666 2667 2668
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2669 2670
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2671 2672 2673

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
2674 2675 2676 2677 2678 2679 2680 2681
    
    This layer does the search in beams for one time step. Specifically, it 
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
2682 2683 2684 2685 2686 2687 2688 2689 2690
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2691

2692
    Args:
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2718

2719
    Returns:
2720 2721
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2722 2723 2724 2725

    Examples:
        .. code-block:: python

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2754
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2772 2773 2774 2775 2776 2777 2778
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2779

2780 2781 2782 2783 2784 2785 2786 2787 2788
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2789

2790 2791 2792 2793 2794 2795
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2822 2823 2824 2825
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2826
              param_attr=None,
C
caoying03 已提交
2827 2828
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2829 2830 2831 2832
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2833
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2834

2835
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2836

2837
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2838

2839
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2840 2841 2842

            h_t & = o_t tanh(c_t)

2843 2844 2845 2846 2847 2848
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2849 2850 2851

        .. math::

2852
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2853 2854 2855 2856 2857 2858 2859 2860

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2861
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2862 2863

    Args:
Y
yangyaming 已提交
2864 2865 2866 2867 2868 2869
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2870
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2871 2872
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2873 2874
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2875 2876
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2877 2878

    Returns:
Y
yangyaming 已提交
2879
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2880 2881

    Raises:
2882 2883 2884 2885
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2886 2887 2888 2889 2890 2891

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2892
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2893
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2894
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2911
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2912 2913 2914 2915
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2916 2917
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2918 2919 2920
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2921
    size = cell_t_prev.shape[1]
2922
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2923 2924
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2925
                param_attr=param_attr,
2926
                bias_attr=bias_attr)
Y
yangyaming 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2939
    return h, c
G
guosheng 已提交
2940 2941


C
caoying03 已提交
2942
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2943
    """
Y
yangyaming 已提交
2944
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2945 2946 2947

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2948
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2949 2950
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2951 2952
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2953
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2954
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2955
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2956 2957
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2958 2959 2960

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2961

G
guosheng 已提交
2962 2963 2964 2965 2966 2967
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2968
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2969 2970 2971 2972
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2973 2974 2975 2976

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2977
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2978 2979 2980
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2981 2982 2983
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2984 2985
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2986 2987 2988 2989 2990
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2991
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2992 2993 2994 2995
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2996 2997


C
caoying03 已提交
2998
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2999
    """
Y
Yibing Liu 已提交
3000
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3001 3002 3003

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3004 3005 3006
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3007
            must be in the range :math:`[-rank(input), rank(input))`. If
3008
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3009
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3010 3011
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3012
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3013
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3014
                       will be named automatically.
G
guosheng 已提交
3015 3016

    Returns:
Y
Yibing Liu 已提交
3017
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3018

G
guosheng 已提交
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3029 3030
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3031 3032 3033 3034 3035 3036 3037

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3038 3039 3040
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3041 3042
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3043 3044 3045 3046 3047
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3048
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3049 3050 3051 3052
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3053 3054


C
caoying03 已提交
3055
def reduce_max(input, dim=None, keep_dim=False, name=None):
3056
    """
Y
yangyaming 已提交
3057
    Computes the maximum of tensor elements over the given dimension.
3058 3059 3060

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3061
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3062 3063 3064
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3065
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3066 3067
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3068
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3069 3070
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3071 3072 3073

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3074

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3086 3087 3088 3089 3090 3091 3092

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3093 3094 3095
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3096 3097
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3098 3099 3100 3101 3102
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3103
            'dim': dim if dim != None else [0],
3104 3105 3106 3107 3108 3109
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3110
def reduce_min(input, dim=None, keep_dim=False, name=None):
3111
    """
Y
yangyaming 已提交
3112
    Computes the minimum of tensor elements over the given dimension.
3113 3114 3115

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3116
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3117 3118 3119
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3120
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3121 3122
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3123
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3124 3125
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3126 3127 3128

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3141 3142 3143 3144 3145 3146 3147

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3148 3149 3150
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3151 3152
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3153 3154 3155 3156 3157
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3158
            'dim': dim if dim != None else [0],
3159 3160 3161 3162
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3163 3164


3165 3166 3167 3168 3169 3170
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3171
        dim (list|int|None): The dimensions along which the product is performed. If
3172 3173
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3174 3175
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3176 3177 3178
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3179
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3180
            layer will be named automatically.
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3195
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3196
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3197 3198 3199 3200 3201 3202 3203

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3204 3205 3206
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3207 3208
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3209 3210 3211 3212 3213
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3214
            'dim': dim if dim != None else [0],
3215 3216 3217 3218 3219 3220
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3221
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3222
    """
C
caoying03 已提交
3223
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3224 3225 3226

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3227 3228 3229 3230 3231
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3232
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3233
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3234
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3235 3236
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3237 3238

    Returns:
D
dzhwinter 已提交
3239
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3240 3241 3242 3243 3244 3245 3246 3247 3248

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3249 3250
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3289
    .. math::
3290 3291

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3292 3293 3294 3295 3296

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3297
        x(Variable|list): The input tensor to l2_normalize layer.
3298
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3299 3300
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3301
        epsilon(float): The epsilon value is used to avoid division by zero, \
3302
            the defalut value is 1e-10.
3303
        name(str|None): A name for this layer(optional). If set None, the layer \
3304
            will be named automatically.
C
caoying03 已提交
3305 3306

    Returns:
3307
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3308 3309

    Examples:
3310

C
caoying03 已提交
3311 3312
        .. code-block:: python

3313 3314 3315 3316
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3317 3318
    """

F
fengjiayi 已提交
3319 3320
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3321 3322
    helper = LayerHelper("l2_normalize", **locals())

3323 3324
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3325
    helper.append_op(
3326 3327 3328 3329
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3330
        attrs={
3331 3332
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3333 3334
        })
    return out
3335 3336


3337
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3338
    """
Y
ying 已提交
3339 3340 3341 3342
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3343

C
chengduoZH 已提交
3344
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3345
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3346

3347 3348 3349 3350 3351
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3352
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3353

C
chengduoZH 已提交
3354
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3355
      performs in the following way.
G
guosheng 已提交
3356

3357
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3358
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3359
        last two dimensions and a batched matrix multiply supporting broadcast
3360
        applies on the two tensors.
G
guosheng 已提交
3361

Y
ying 已提交
3362 3363
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3364
    removed after matrix multiplication.
G
guosheng 已提交
3365 3366 3367

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3368 3369 3370
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3371
        name(str|None): A name for this layer(optional). If set None, the layer
3372
            will be named automatically.
G
guosheng 已提交
3373 3374

    Returns:
3375
        Variable: The product Tensor variable.
G
guosheng 已提交
3376

G
guosheng 已提交
3377 3378 3379
    Examples:
        .. code-block:: python

3380
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3381 3382
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3383

3384 3385
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3386

3387 3388
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3389

3390 3391
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3392 3393 3394 3395

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3396 3397
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3398

Y
ying 已提交
3399
            # x: [M], y: [N]
3400
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3401
    """
Y
ying 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3414
            y_shape = y_shape + [1]
Y
ying 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3431
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3432
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3433
    helper.append_op(
3434 3435 3436 3437 3438 3439 3440
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3441 3442


3443
def topk(input, k, name=None):
Q
qingqing01 已提交
3444 3445 3446 3447
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3448
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3449 3450 3451 3452 3453 3454
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3476 3477 3478
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3479
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3480
                 of input.
3481
        name(str|None): A name for this layer(optional). If set None, the layer
3482
                       will be named automatically.
F
fengjiayi 已提交
3483
                       Default: None
Q
qingqing01 已提交
3484 3485

    Returns:
3486 3487 3488
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3489
        within the last dimension of input.
Q
qingqing01 已提交
3490

F
fengjiayi 已提交
3491 3492
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3493 3494 3495 3496 3497 3498 3499

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3500
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3518
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3519
    """
Y
ying 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3529

Y
ying 已提交
3530
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3531

3532
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3533 3534
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3535
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3536

3537
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3538 3539
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3540

3541 3542 3543
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3544
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3545
                          the length of reference string.
3546
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3547
                                     calculating edit distance.
3548
        name (str): The name of this layer. It is optional.
3549

W
wanghaoshuang 已提交
3550
    Returns:
W
wanghaoshuang 已提交
3551
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3552 3553 3554 3555 3556

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3557
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3558
            cost = fluid.layers.edit_distance(input=x,label=y)
3559
    """
3560
    helper = LayerHelper("edit_distance", **locals())
3561

3562
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3563
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3564 3565 3566 3567 3568 3569 3570
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3571
            attrs={"tokens": ignored_tokens})
3572 3573 3574 3575 3576
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3577
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3578
            attrs={"tokens": ignored_tokens})
3579 3580
        label = erased_label

3581 3582
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3583
    sequence_num = helper.create_tmp_variable(dtype="int64")
3584 3585 3586 3587
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3588 3589
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3590 3591
        attrs={"normalized": normalized})

3592
    return edit_distance_out, sequence_num
3593 3594 3595 3596 3597


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3598

Y
ying 已提交
3599 3600 3601 3602
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3620
        input.lod = [[4, 4]]
3621 3622 3623 3624 3625 3626 3627

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3628
        output.lod = [[2, 1]]
3629 3630 3631

    Args:

Y
ying 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3641
        name (str): The name of this layer. It is optional.
3642 3643

    Returns:
3644
        Variable: CTC greedy decode result. If all the sequences in result were
3645
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3646 3647 3648 3649 3650

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3651

3652
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3653
    """
3654
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3655
    _, topk_indices = topk(input, k=1)
3656 3657 3658 3659 3660 3661

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3662
        outputs={"Output": [ctc_out]},
3663 3664
        attrs={"merge_repeated": True,
               "blank": blank})
3665
    return ctc_out
3666 3667


F
fengjiayi 已提交
3668
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3669
    """
3670 3671
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3672
    to compute Connectionist Temporal Classification (CTC) loss.
3673 3674
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3675 3676 3677
    input tensor.

    Args:
3678
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3679 3680 3681 3682
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3683
       label (Variable): The ground truth of variable-length sequence,
3684 3685 3686
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3687 3688
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3689 3690 3691
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3692
         follewed by a mean_op.
W
wanghaoshuang 已提交
3693 3694

    Returns:
3695 3696
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3697 3698

    Examples:
3699

W
wanghaoshuang 已提交
3700
        .. code-block:: python
3701

3702 3703 3704
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3705 3706

    """
F
fengjiayi 已提交
3707
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3734 3735 3736
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3737 3738 3739 3740 3741
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3742

3743
            out.lod  = [[0, 1, 3]]
3744 3745 3746 3747

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3748 3749 3750 3751 3752 3753 3754
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3755 3756 3757

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3758 3759

    Returns:
3760

3761 3762 3763 3764 3765
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3766
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3767
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3768 3769 3770 3771 3772 3773 3774 3775 3776
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3777 3778


3779 3780 3781 3782
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3783 3784 3785 3786 3787 3788 3789
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3790 3791 3792 3793 3794 3795 3796
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3797 3798
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3799
            sample is 1.0.
3800 3801 3802
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3803

3804
    Returns:
Y
Yibing Liu 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3832
    """
Y
Yang Yu 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3877
    return cost / (num_neg_samples + 1)
3878 3879


G
guosheng 已提交
3880
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3881 3882 3883
    """
    The hierarchical sigmoid operator is used to accelerate the training
    process of language model. This operator organizes the classes into a 
G
guosheng 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
    
W
weixing02 已提交
3894
    Args:
G
guosheng 已提交
3895 3896 3897 3898 3899 3900
        input (Variable): The input tensor variable with shape 
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3901 3902 3903
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter 
G
guosheng 已提交
3904 3905
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3906 3907 3908 3909 3910 3911 3912 3913

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3914 3915 3916
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3917 3918 3919 3920 3921 3922 3923 3924
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3925
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3926 3927 3928 3929 3930
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3931 3932 3933 3934 3935 3936 3937 3938
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3939 3940
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3941
        inputs=inputs,
W
weixing02 已提交
3942 3943 3944 3945 3946 3947
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3948
def transpose(x, perm, name=None):
Y
ying 已提交
3949 3950 3951 3952 3953 3954 3955
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3956 3957 3958
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3959 3960 3961 3962 3963 3964 3965 3966

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3967
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3968 3969
    """

Y
fix ci.  
ying 已提交
3970
    if len(perm) != len(x.shape):
Y
ying 已提交
3971 3972 3973
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3974 3975 3976 3977 3978 3979
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3980 3981

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3982
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3983 3984
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3985
        inputs={'X': [x]},
Y
ying 已提交
3986 3987 3988
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3989 3990


3991 3992 3993 3994 3995 3996 3997
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
3998
    """
3999 4000 4001 4002 4003 4004 4005
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4034 4035 4036 4037 4038 4039 4040 4041 4042
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4043 4044 4045
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4046 4047 4048 4049 4050
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4078 4079 4080
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4093
            output.dims = {8, 8}
4094

4095
            output.lod = [[4, 4]]
4096

D
dzhwinter 已提交
4097
     Examples:
4098 4099 4100

        .. code-block:: python

4101 4102
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4103 4104

    """
W
wanghaoshuang 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4115 4116 4117 4118 4119 4120 4121
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4122
    helper = LayerHelper('im2sequence', **locals())
4123 4124
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4125
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4126
    return out
4127 4128


Y
yuyang18 已提交
4129
@templatedoc()
4130
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4131 4132
    """
    ${comment}
4133 4134

    Args:
Y
yuyang18 已提交
4135
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4136 4137
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4138 4139 4140 4141 4142
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4143
        ${out_comment}.
4144 4145

    Examples:
Y
yuyang18 已提交
4146 4147 4148 4149
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4162
    return helper.append_activation(out)
4163 4164


Y
yuyang18 已提交
4165
@templatedoc()
4166 4167
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4168 4169 4170 4171 4172 4173 4174
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4175 4176

    Args:
Y
yuyang18 已提交
4177 4178
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4179 4180

    Returns:
Y
yuyang18 已提交
4181
        ${out_comment}.
4182 4183
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4184 4185 4186 4187 4188 4189

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4190 4191 4192 4193 4194 4195
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4196 4197 4198 4199 4200


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4201

4202 4203 4204 4205
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4206

4207 4208 4209
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4210

4211 4212 4213
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4214

4215
    The equation is as follows:
4216

4217
    1) Hard label (one-hot label, so every sample has exactly one class)
4218

4219 4220 4221 4222
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4223

4224 4225 4226
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4227

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4249 4250
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4267 4268
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4269
    For each instance, it computes the smooth L1 loss element by element first
4270
    and then sums all the losses. So the shape of ouput Variable is
4271
    [batch_size, 1].
4272

4273 4274
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4275
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4276
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4277
            L1 loss op with same shape as :attr:`x`.
4278
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4279 4280
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4281
            by this tensor element by element.
4282
        outside_weight (Variable|None): A tensor with rank at least 2. This
4283 4284
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4285
            element by element.
4286
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4287 4288
           scalar with default value 1.0.

4289
    Returns:
4290
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4291 4292 4293 4294 4295

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4296 4297
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4298
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4299
            out = fluid.layers.smooth_l1(x=fc, y=label)
4300
    """
4301

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4317 4318 4319 4320


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4321
    This layer creates the one-hot representations for input indices.
4322 4323

    Args:
Y
Yibing Liu 已提交
4324 4325
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4326 4327

    Returns:
Y
Yibing Liu 已提交
4328
        Variable: The one-hot representations of input.
4329 4330

    Examples:
C
caoying03 已提交
4331
        .. code-block:: python
4332

Y
Yibing Liu 已提交
4333 4334
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4335 4336 4337 4338 4339 4340 4341 4342 4343
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4344 4345


Y
Yu Yang 已提交
4346
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4347
    """
Y
yi.wu 已提交
4348 4349 4350
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4351 4352 4353 4354 4355 4356

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4357 4358
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4359 4360 4361 4362 4363 4364

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4365 4366
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4367 4368
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4369 4370 4371 4372 4373
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4374
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4375
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4376 4377
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4378 4379
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4380 4381 4382
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4383 4384


4385
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4386
    """
C
caoying03 已提交
4387 4388
    Gives a new shape to the input Tensor without changing its data.

4389 4390 4391 4392 4393
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4394

4395
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4396

4397 4398 4399 4400
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4401
    2. 0 means the actual dimension value is going to be copied from the
4402 4403 4404 4405
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4406 4407

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4408
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4409
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4410

4411
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4412 4413
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4414 4415
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4416
    dimensions.
C
caoying03 已提交
4417

4418
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4419 4420 4421 4422
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4423 4424

    Args:
4425
        x(variable): The input tensor.
C
caoying03 已提交
4426 4427
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4428 4429 4430 4431 4432
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4433
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4434 4435 4436 4437
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4438
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4439

4440 4441
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4442

X
Xin Pan 已提交
4443 4444 4445
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4446 4447
    Examples:
        .. code-block:: python
G
guosheng 已提交
4448

4449
            data = fluid.layers.data(
4450
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4451
            reshaped = fluid.layers.reshape(
4452
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4453 4454 4455 4456
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4457 4458 4459 4460 4461
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4462

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4478
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4479
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4480 4481
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4482
        inputs=inputs,
D
dzhwinter 已提交
4483 4484
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4485

D
dzhwinter 已提交
4486
    return helper.append_activation(out)
4487 4488


Y
yangyaming 已提交
4489
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4490
    """
Y
Yibing Liu 已提交
4491
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4492 4493 4494 4495
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4496
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4497 4498 4499 4500 4501 4502

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4503
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4504 4505 4506
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4507
            target_lod: [4, 2]
Y
yangyaming 已提交
4508 4509

            then we get a 1-level LoDTensor:
4510
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4511 4512 4513 4514 4515 4516
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4517
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4518 4519 4520 4521
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4522
                y.data = [[2, 4]]
Y
yangyaming 已提交
4523 4524 4525
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4526
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4527 4528 4529 4530 4531 4532
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4533
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4534 4535 4536 4537
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4538
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4539 4540 4541 4542
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4543
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4544 4545 4546 4547 4548
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4549
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4550
                           from :attr:`y`.
Y
yangyaming 已提交
4551
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4552
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4553 4554

    Returns:
Y
Yibing Liu 已提交
4555
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4556 4557

    Raises:
Y
Yibing Liu 已提交
4558
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4594
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4623 4624
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4652 4653 4654 4655


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4656
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4657
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4658

G
guosheng 已提交
4659 4660 4661 4662
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4685
                         The length of :attr:paddings must be
G
guosheng 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4696

G
guosheng 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4711 4712 4713 4714 4715 4716 4717 4718 4719


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4720 4721
    called label-smoothing regularization (LSR).

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4745
                              be :math:`(1, class\_num)`.
4746 4747
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4748
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4776 4777


Y
yi.wu 已提交
4778
@templatedoc()
4779 4780
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4781
    ${comment}
4782 4783

    Args:
Y
yi.wu 已提交
4784 4785
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4786 4787 4788
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4789 4790

    Returns:
Y
update  
yi.wu 已提交
4791
        Variable: ${out_comment}.
4792 4793

    Examples:
4794 4795
        .. code-block:: python

4796
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4842 4843
        .. code-block:: python

W
whs 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4855 4856


4857 4858 4859 4860 4861
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4862
    """
Q
qiaolongfei 已提交
4863
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4864

4865
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4866 4867 4868
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4869

4870
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4871

4872
    Args:
4873
        input (Variable): The input tensor of image resize layer,
4874 4875
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4876
        out_shape(list|tuple|Variable|None): Output shape of image resize
4877 4878
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4879
        scale(float|None): The multiplier for the input height or width.
4880 4881 4882
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4883 4884
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4885 4886
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4887 4888

    Returns:
Q
update  
qiaolongfei 已提交
4889 4890
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4891

4892 4893 4894
    Examples:
        .. code-block:: python

4895
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4896
    """
4897 4898 4899 4900
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4901 4902
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4903 4904
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4905 4906 4907 4908

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4909 4910 4911
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4912
    if out_shape is not None:
B
baiyf 已提交
4913 4914 4915
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4916 4917 4918 4919 4920 4921
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4922 4923 4924 4925
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4926 4927
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4928
        type=resample_methods[resample],
4929
        inputs=inputs,
4930 4931 4932 4933
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4934 4935


Y
yuyang18 已提交
4936
@templatedoc(op_type="bilinear_interp")
4937 4938
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4939 4940 4941 4942 4943 4944
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4945

Y
yuyang18 已提交
4946 4947 4948 4949 4950 4951 4952 4953
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4954 4955 4956 4957 4958 4959 4960
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4961 4962 4963
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4964 4965 4966 4967 4968 4969 4970
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4971
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4972

4973
    Returns:
Q
update  
qiaolongfei 已提交
4974
        Variable: The output is a 4-D tensor of the shape
4975
        (num_batches, channls, out_h, out_w).
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4986 4987 4988
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4989 4990 4991
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4992 4993
def gather(input, index):
    """
Q
qiaolongfei 已提交
4994 4995
    **Gather Layer**

4996
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4997 4998 4999 5000
    of X indexed by `index` and concatenate them together.

    .. math::

5001
        Out = X[Index]
W
whs 已提交
5002 5003 5004 5005 5006 5007 5008


    .. code-block:: text


                Given:

5009 5010
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5021
        input (Variable): The source input with rank>=1.
W
whs 已提交
5022 5023 5024 5025 5026 5027
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5028

W
whs 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5057

5058 5059 5060
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5061
    """
F
stash  
fengjiayi 已提交
5062
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5063
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5064
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5065 5066
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5067
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5068
    if isinstance(seed, int):
F
fengjiayi 已提交
5069 5070 5071 5072 5073
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5074 5075 5076 5077
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5078
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5079 5080
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5081 5082
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5083
    return out
W
whs 已提交
5084 5085


5086
def log(x):
W
wanghaoshuang 已提交
5087 5088 5089 5090 5091
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5092
        Out = \\ln(x)
W
wanghaoshuang 已提交
5093 5094

    Args:
5095
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5096 5097 5098 5099 5100 5101 5102 5103

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5104
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5105 5106
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5107
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5108
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5109
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5110 5111 5112
    return out


5113
def relu(x):
W
wanghaoshuang 已提交
5114 5115
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5116
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5117 5118 5119 5120
    the tensor elementwise.

    .. math::

5121
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5122 5123

    Args:
5124
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5125 5126 5127 5128 5129 5130 5131 5132

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5133
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5134 5135
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5136
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5137
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5138
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5139
    return out
5140 5141


W
whs 已提交
5142 5143 5144
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5145 5146 5147 5148
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5149
    .. math::
5150 5151

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5152

5153
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5154 5155 5156 5157 5158
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5159
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5160
                           Its shape should be the same as input.
5161
        num_classes (int): The possible number of labels.
W
whs 已提交
5162 5163 5164 5165

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5166
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5167 5168 5169 5170

    Examples:

        .. code-block:: python
5171

W
whs 已提交
5172 5173 5174 5175 5176 5177 5178 5179 5180
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5181 5182
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5183
        outputs={
W
whs 已提交
5184 5185 5186
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5187 5188 5189
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
 
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
    
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
    
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
    
    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).   
 
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out