detection.py 135.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
42
    'retinanet_target_assign',
43
    'sigmoid_focal_loss',
44 45 46 47
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
48
    'generate_mask_labels',
49 50 51 52
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
53
    'yolo_box',
54
    'box_clip',
J
jerrywgz 已提交
55
    'multiclass_nms',
56
    'multiclass_nms2',
57
    'retinanet_detection_output',
58
    'distribute_fpn_proposals',
59
    'box_decoder_and_assign',
60
    'collect_fpn_proposals',
C
chengduoZH 已提交
61
]
62 63


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
    **Target Assign Layer for Retinanet .**

    This layer can be, for given the Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each anchor, these target labels are used for training
    retinanet. Every anchor is assigned with a length :attr:`num_classes`
    one-hot vector of classification targets, and a 4-vector of box regression
    targets. The assignment rules are as followed:
    
    1. Anchors are assigned to ground-truth boxes when: (i) it has the highest
    IoU overlap with a ground-truth box, or (ii) it has an IoU overlap higher
    than positive_overlap(0.5) with any ground-truth box.
    
    2. Anchors are assigned to background when its IoU ratio is lower than
    negative_overlap (0.4) for all ground-truth boxes.
    
    When an anchor is assigned with a ground-truth box which is the i-th category,
    the i-th entry in its C vector of targets is set to 1 and all other entries
    are set to 0. When an anchor is assigned with background, all entries are set
    to 0. Anchors that are not assigned do not contribute to the training
    objective. The regression targets are the encoded ground-truth boxes
    associated with the assigned anchors.
 
    Args:
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        cls_logits(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            number of classes (excluding background), M is number of bounding boxes.
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
        gt_boxes(Variable): The ground-truth bounding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_labels(variable): The ground-truth labels are a 2D LoDTensor with
            shape [Ng, 1], Ng is the total number of ground-truth labels of
            mini-batch input.
        is_crowd(Variable): A 1-D LoDTensor which indicates ground-truth is crowd.
        im_info(Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
            3 is the height, width and scale.
        num_classes(int32): The number of classes.
        positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
        tuple:
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox, bbox_inside_weight, fg_num) is returned. The
               predicted_scores and predicted_location are the predicted result
               of the retinanet.The target_label and target_bbox are the ground
               truth, respectively. The predicted_location is a 2D Tensor with
               shape [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, C], and the shape of target_label is [F + B, 1], B is the
               number of the background anchors, the F and B is depends on the
               input of this operator. Bbox_inside_weight represents whether the
               predicted location is fake foreground or not and the shape is [F, 4].
               Fg_num is the foreground number (including fake foreground) which
               is needed by focal loss.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          bbox_pred = layers.data(name='bbox_pred', shape=[1, 100, 4],
                            append_batch_size=False, dtype='float32')
          cls_logits = layers.data(name='cls_logits', shape=[1, 100, 10],
                            append_batch_size=False, dtype='float32')
          anchor_box = layers.data(name='anchor_box', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          anchor_var = layers.data(name='anchor_var', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
          gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
          gt_labels = layers.data(name='gt_labels', shape=[10, 1],
                            append_batch_size=False, dtype='float32')
          is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
          im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
          loc_pred, score_pred, loc_target, score_target, bbox_inside_weight, fg_num =
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


222 223
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
224
                      anchor_box,
225
                      anchor_var,
226 227 228
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
229
                      rpn_batch_size_per_im=256,
230 231
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
232
                      rpn_positive_overlap=0.7,
233 234
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
235
    """
H
haowang101779990 已提交
236
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
254
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
255 256 257
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
258 259 260
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
261 262 263 264 265 266
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
267 268
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
翟飞跃 已提交
269
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
270 271
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
272 273 274
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
275
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
276 277 278
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
279 280 281 282 283 284 285 286 287
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
288
        tuple:
Y
Yuan Gao 已提交
289
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
290 291
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
292 293 294 295 296 297 298
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
299
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
300 301
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
302 303 304 305

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            import paddle.fluid as fluid
            bbox_pred = fluid.layers.data(name='bbox_pred', shape=[100, 4],
                            append_batch_size=False, dtype='float32')
            cls_logits = fluid.layers.data(name='cls_logits', shape=[100, 1],
                            append_batch_size=False, dtype='float32')
            anchor_box = fluid.layers.data(name='anchor_box', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            anchor_var = fluid.layers.data(name='anchor_var', shape=[20, 4],
                            append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[10, 4],
                            append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[1],
                            append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_infoss', shape=[1, 3],
                            append_batch_size=False, dtype='float32')
321 322
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
323

Y
Yuan Gao 已提交
324 325 326
    """

    helper = LayerHelper('rpn_target_assign', **locals())
327
    # Assign target label to anchors
J
jerrywgz 已提交
328 329 330 331 332 333 334
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
335 336
    helper.append_op(
        type="rpn_target_assign",
337 338 339 340 341 342
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
343 344 345
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
346
            'TargetLabel': target_label,
J
jerrywgz 已提交
347
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
348
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
349 350 351
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
352
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
353 354
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
355 356
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
357 358
        })

359 360 361 362
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
363
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
364

365 366 367 368
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
369

J
jerrywgz 已提交
370
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
371 372


373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
def sigmoid_focal_loss(x, label, fg_num, gamma=2, alpha=0.25):
    """
    **Sigmoid Focal Loss Operator.**

    Focal loss is used to address the foreground-background class imbalance existed
    on the training phase of one-stage detectors. This operator computes the sigmoid
    value for each element in the input tensor, after which focal loss is measured.
    
    The focal loss is given as followed:

    .. math::
        loss_j = (-label_j * alpha * {(1 - \\sigma(x_j))}^{gamma} * \\log(\\sigma(x_j)) -
        (1 - labels_j) * (1 - alpha) * {(\sigma(x_j)}^{ gamma} * \\log(1 - \\sigma(x_j)))
        / fg\_num, j = 1,...,K

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}

    Args:
        x(Variable): A 2-D tensor with shape [N, D], where N is the batch size and D is the number
            of classes (excluding background). This input is a tensor of logits computed by the
            previous operator.
        label(Variable): A 2-D tensor with shape [N, 1], which is the probabilistic labels.
        fg_num(Variable): A 1-D tensor with shape [1], which is the number of foreground.

        gamma(float): Hyper-parameter to balance the easy and hard examples. Default value is
            set to 2.0.
        alpha(float): Hyper-parameter to balance the positive and negative example. Default value
            is set to 0.25.

    Returns:
        out(Variable): A 2-D tensor with shape [N, D], which is the focal loss.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            input = fluid.layers.data(
                name='data', shape=[10,80], append_batch_size=False, dtype='float32')
            label = fluid.layers.data(
                name='label', shape=[10,1], append_batch_size=False, dtype='int32')
            fg_num = fluid.layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32')
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
                                                   gamma=2.,
                                                   alpha=0.25)
    """

    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
441 442
def detection_output(loc,
                     scores,
443 444 445 446 447 448 449
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
450 451
                     nms_eta=1.0,
                     return_index=False):
452
    """
453
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
454

455 456
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
457

458 459 460 461 462 463
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
464 465 466 467 468 469

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
470 471 472 473
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.
494
        return_index(bool): Whether return selected index. Default: False
495 496

    Returns:
M
minqiyang 已提交
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

        Out: The detection outputs is a LoDTensor with shape [No, 6]. Each row 
        has six values: [label, confidence, xmin, ymin, xmax, ymax]. `No` is 
        the total number of detections in this mini-batch. For each instance, 
        the offsets in first dimension are called LoD, the offset number is 
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]` 
        detected results, if it is 0, the i-th image has no detected results. 

        If all images have not detected results, LoD will be set to {1}, and 
        output tensor only contains one value, which is -1.
        (After version 1.3, when no boxes detected, the lod is changed
        from {0} to {1}.)       
 
        Index: Only return when return_index is True. A 2-D LoDTensor with 
        shape [No, 1] represents the selected index which type is Integer. 
        The index is the absolute value cross batches. No is the same number 
        as Out. If the index is used to gather other attribute such as age, 
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

520 521 522 523

    Examples:
        .. code-block:: python

524 525 526
            import paddle.fluid as fluid

            pb = fluid.layers.data(name='prior_box', shape=[10, 4],
527
                         append_batch_size=False, dtype='float32')
528
            pbv = fluid.layers.data(name='prior_box_var', shape=[10, 4],
529
                          append_batch_size=False, dtype='float32')
530
            loc = fluid.layers.data(name='target_box', shape=[2, 21, 4],
531
                          append_batch_size=False, dtype='float32')
532
            scores = fluid.layers.data(name='scores', shape=[2, 21, 10],
533
                          append_batch_size=False, dtype='float32')
534
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
535 536
                                       loc=loc,
                                       prior_box=pb,
537 538
                                       prior_box_var=pbv,
                                       return_index=True)
539 540
    """
    helper = LayerHelper("detection_output", **locals())
541 542 543 544 545
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
546
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
547
    scores = nn.transpose(scores, perm=[0, 2, 1])
548
    scores.stop_gradient = True
X
Xin Pan 已提交
549 550
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
582
    nmsed_outs.stop_gradient = True
583 584
    if return_index:
        return nmsed_outs, index
585
    return nmsed_outs
C
chengduoZH 已提交
586 587


X
Xin Pan 已提交
588 589 590 591 592 593 594 595 596 597 598
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
599 600 601 602 603 604 605 606 607

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[4], dtype='float32')
            y = fluid.layers.data(name='y', shape=[4], dtype='float32')
            iou = fluid.layers.iou_similarity(x=x, y=y)
X
Xin Pan 已提交
608 609 610
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
611
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
631 632
              name=None,
              axis=0):
X
Xin Pan 已提交
633
    """
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
672 673

    Args:
674
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
675 676 677 678 679 680 681 682 683 684
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
685
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
        box_normalized(bool): Whether treat the priorbox as a noramlized box.
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
699
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
700 701 702 703
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
704 705

    Returns:
W
wangguanzhong 已提交
706 707
        Variable:

708
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
709 710 711 712
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
        and M represents the number of deocded boxes.
713 714 715 716 717

    Examples:
 
        .. code-block:: python
 
718
            import paddle.fluid as fluid
W
wangguanzhong 已提交
719
            # For encode
720
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
721
                                  shape=[512, 4],
722 723 724 725
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
726 727 728 729 730
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
731
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
732
                                  shape=[512, 4],
733 734 735 736
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
737 738 739 740 741 742
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
743 744 745 746
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
747 748
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
749 750 751 752
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

753 754 755 756 757 758 759 760 761 762 763 764
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
765 766
    helper.append_op(
        type="box_coder",
767 768
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
B
Bai Yifan 已提交
783 784 785 786 787 788 789 790

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            input = fluid.layers.data(name='input', shape=[4, 10, 5, 5],
                                      append_batch_size=False, dtype='float32')
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
791 792 793
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
794
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
795 796 797 798 799 800 801 802 803 804 805 806
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
807 808
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
809 810
                gt_box,
                gt_label,
D
dengkaipeng 已提交
811
                anchors,
812
                anchor_mask,
D
dengkaipeng 已提交
813 814
                class_num,
                ignore_thresh,
815
                downsample_ratio,
816
                gt_score=None,
D
dengkaipeng 已提交
817
                use_label_smooth=True,
D
dengkaipeng 已提交
818 819 820 821 822
                name=None):
    """
    ${comment}

    Args:
823
        x (Variable): ${x_comment}The data type is float32 or float64. 
824
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
825 826 827 828
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
829
                          N is the batch number and B is the max box number in 
830
                          an image.The data type is float32 or float64. 
831
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
832
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
833
        anchors (list|tuple): ${anchors_comment}
834
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
835 836
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
837
        downsample_ratio (int): ${downsample_ratio_comment}
838 839 840
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
841
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
842
                            of [N, B]. Default None.
843
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
844 845

    Returns:
846
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
847 848 849

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
850 851
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
852
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
853 854 855
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
856
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
857 858

    Examples:
859 860
      .. code-block:: python

861
          import paddle.fluid as fluid
862 863 864 865
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
866 867
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
868 869
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
870 871
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
872 873 874 875 876
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
877
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
878
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
879
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
880
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
881
    if gt_score is not None and not isinstance(gt_score, Variable):
882
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
883 884
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
885 886
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
887 888 889 890 891
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
892 893 894
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
895 896 897 898 899 900 901

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

902 903 904
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

905 906
    inputs = {
        "X": x,
907 908
        "GTBox": gt_box,
        "GTLabel": gt_label,
909
    }
910
    if gt_score:
911
        inputs["GTScore"] = gt_score
912

D
dengkaipeng 已提交
913 914
    attrs = {
        "anchors": anchors,
915
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
916 917
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
918
        "downsample_ratio": downsample_ratio,
919
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
920 921 922 923
    }

    helper.append_op(
        type='yolov3_loss',
924
        inputs=inputs,
925 926 927 928 929
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
930 931 932 933
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
934
@templatedoc(op_type="yolo_box")
935 936 937 938 939 940 941
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
942 943 944 945
    """
    ${comment}

    Args:
946 947
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
948 949 950 951
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
952 953 954
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
955 956

    Returns:
D
dengkaipeng 已提交
957
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
958 959
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
960 961 962 963 964 965 966 967

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
968

D
dengkaipeng 已提交
969 970
    .. code-block:: python

X
xiaoting 已提交
971
        import paddle.fluid as fluid
972 973
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
974
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
975
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
976 977 978 979 980
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
981 982 983
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
984
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
985
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
986
    if not isinstance(class_num, int):
987
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
988
    if not isinstance(conf_thresh, float):
989
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
990 991 992 993 994 995 996

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
997
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
998 999 1000 1001 1002
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
1003 1004 1005 1006
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1007 1008 1009 1010 1011 1012 1013 1014
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1015
@templatedoc()
1016 1017
def detection_map(detect_res,
                  label,
1018 1019
                  class_num,
                  background_label=0,
1020 1021
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1022 1023 1024 1025
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1054
            import paddle.fluid as fluid
1055
            from fluid.layers import detection
X
Xin Pan 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

1067
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1068
    """
1069 1070
    helper = LayerHelper("detection_map", **locals())

1071
    def __create_var(type):
X
Xin Pan 已提交
1072
        return helper.create_variable_for_type_inference(dtype=type)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

1085 1086 1087 1088 1089
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1090
            'HasState': has_state,
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1104 1105
            'ap_type': ap_version,
            'class_num': class_num,
1106
        })
1107
    return map_out
1108 1109


1110 1111 1112 1113
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1114
    """
Y
yuyang18 已提交
1115 1116
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1117
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1118 1119 1120 1121
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1122
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1123 1124 1125

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1126 1127 1128
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1129

Y
yuyang18 已提交
1130
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1131 1132 1133
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1134 1135 1136
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1137 1138
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1150
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1151
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1152 1153 1154 1155
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1156
    Returns:
W
wangguanzhong 已提交
1157
        Tuple:
Y
yuyang18 已提交
1158

W
wangguanzhong 已提交
1159 1160
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1161 1162 1163 1164 1165
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1166 1167
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1168 1169 1170 1171 1172 1173 1174
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1175
        >>> import paddle.fluid as fluid
1176 1177
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1178 1179
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1180 1181
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1182 1183 1184
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1185 1186 1187
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1188 1189 1190 1191
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1209

1210 1211 1212 1213 1214
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1215

1216
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1217

1218 1219 1220
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1221

1222 1223
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1224

1225
        Otherwise,
C
chengduoZH 已提交
1226

1227 1228
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1229

1230
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1231

1232 1233
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
1234

1235
    .. code-block:: text
C
chengduoZH 已提交
1236

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
1252 1253 1254 1255 1256
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
1257 1258 1259 1260 1261 1262
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
            import paddle.fluid as fluid
            x = fluid.layers.data(
                name='x',
                shape=[4, 20, 4],
                dtype='float',
                lod_level=1,
                append_batch_size=False)
            matched_id = fluid.layers.data(
                name='indices',
                shape=[8, 20],
                dtype='int32',
                append_batch_size=False)
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1279 1280
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1281 1282
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1310
             normalize=True,
1311 1312
             sample_size=None):
    """
Y
yuyang18 已提交
1313
    **Multi-box loss layer for object detection algorithm of SSD**
1314

翟飞跃 已提交
1315 1316
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1317 1318 1319 1320
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1321
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1322

1323
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1324

1325
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1326

1327
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1328

1329
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1330

1331
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1332

1333 1334
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1335

1336
    4. Assign classification and regression targets
Y
yuyang18 已提交
1337

1338
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1339

1340
      4.2. Assign regression targets.
Y
yuyang18 已提交
1341

1342
      4.3. Assign classification targets.
Y
yuyang18 已提交
1343

1344
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1345

1346
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1347

1348
      5.2 Compute localization loss.
Y
yuyang18 已提交
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
翟飞跃 已提交
1360
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1373
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1374
        neg_overlap (float): The negative overlap upper bound for the unmatched
1375
            predictions. Use only when mining_type is 'max_negative',
1376 1377 1378 1379
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1380
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1381 1382
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1383
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1384
            of output locations, True by default.
1385 1386
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1387 1388

    Returns:
Y
yuyang18 已提交
1389 1390
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
1391 1392

    Raises:
Y
yuyang18 已提交
1393 1394
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1395 1396

    Examples:
1397
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1415 1416 1417 1418 1419 1420 1421
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1422
    conf_shape = nn.shape(confidence)
1423 1424

    def __reshape_to_2d(var):
1425
        return nn.flatten(x=var, axis=2)
1426 1427 1428 1429 1430

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1431 1432
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1433 1434 1435

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1436 1437
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1438
    gt_label.stop_gradient = True
1439 1440 1441 1442 1443 1444 1445
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1446
    target_label.stop_gradient = True
1447 1448
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1449
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1450
    actual_shape.stop_gradient = True
1451 1452
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1453
    conf_loss = nn.reshape(
1454
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1455
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1456
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1457
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1458 1459
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1474
            'neg_dist_threshold': neg_overlap,
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1500

1501 1502 1503 1504
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1505 1506 1507 1508
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1509 1510 1511 1512 1513 1514 1515 1516
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1517 1518 1519 1520
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1521 1522
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1523
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1524 1525 1526
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1527 1528 1529 1530 1531
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1532
    return loss
C
chengduoZH 已提交
1533 1534


1535 1536 1537 1538
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1539
              aspect_ratios=[1.],
1540 1541 1542 1543 1544
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1545 1546
              name=None,
              min_max_aspect_ratios_order=False):
1547
    """
Q
update  
qiaolongfei 已提交
1548
    **Prior Box Operator**
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1560
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1561 1562
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1563 1564
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1565 1566 1567 1568
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1569
       step(list|tuple): Prior boxes step across width and height, If
1570
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1571 1572
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1573 1574
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1575
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1576
            in order of [min, max, aspect_ratios], which is consistent with
1577 1578 1579
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1580 1581

    Returns:
Q
update  
qiaolongfei 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1595 1596 1597 1598


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1599

1600
            import paddle.fluid as fluid
R
ruri 已提交
1601 1602
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
Q
update  
qiaolongfei 已提交
1603
            box, var = fluid.layers.prior_box(
R
ruri 已提交
1604
                input=input,
Q
update  
qiaolongfei 已提交
1605 1606 1607 1608
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1609 1610 1611 1612
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1628 1629 1630 1631 1632 1633 1634 1635
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1636 1637
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1638 1639
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1640 1641
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1642 1643
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1644 1645
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1667
                      flatten_to_2d=False,
R
ruri 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1699
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1700 1701 1702 1703
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1704 1705
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1706 1707 1708 1709 1710 1711
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1712 1713 1714 1715
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1716 1717

        variances: the expanded variances of PriorBox.
1718 1719 1720 1721
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1722 1723 1724 1725 1726


    Examples:
        .. code-block:: python

1727
            import paddle.fluid as fluid
R
ruri 已提交
1728 1729
            input = fluid.layers.data(name="input", shape=[3,6,9])
            images = fluid.layers.data(name="images", shape=[3,9,12])
R
ruri 已提交
1730
            box, var = fluid.layers.density_prior_box(
R
ruri 已提交
1731
                input=input,
R
ruri 已提交
1732
                image=images,
1733 1734 1735 1736 1737
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1768 1769 1770 1771
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1787
def multi_box_head(inputs,
C
chengduoZH 已提交
1788 1789
                   image,
                   base_size,
C
chengduoZH 已提交
1790
                   num_classes,
C
chengduoZH 已提交
1791
                   aspect_ratios,
1792 1793
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1794 1795
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1796 1797 1798 1799
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1800 1801
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1802
                   clip=False,
C
chengduoZH 已提交
1803
                   kernel_size=1,
C
chengduoZH 已提交
1804
                   pad=0,
C
chengduoZH 已提交
1805
                   stride=1,
1806 1807
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1808
    """
C
chengduoZH 已提交
1809 1810
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1811
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1812
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1813 1814

    Args:
1815
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1816
            of all Variables is NCHW.
C
chengduoZH 已提交
1817 1818
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1819 1820
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1843
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1844 1845 1846 1847 1848 1849
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1850
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1851
            in order of [min, max, aspect_ratios], which is consistent with
1852 1853 1854
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1855 1856

    Returns:
Q
update  
qiaolongfei 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1872

C
chengduoZH 已提交
1873 1874 1875

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
          import paddle.fluid as fluid

          images = fluid.layers.data(name='data', shape=[3, 300, 300], dtype='float32')
          conv1 = fluid.layers.data(name='conv1', shape=[512, 19, 19], dtype='float32')
          conv2 = fluid.layers.data(name='conv2', shape=[1024, 10, 10], dtype='float32')
          conv3 = fluid.layers.data(name='conv3', shape=[512, 5, 5], dtype='float32')
          conv4 = fluid.layers.data(name='conv4', shape=[256, 3, 3], dtype='float32')
          conv5 = fluid.layers.data(name='conv5', shape=[256, 2, 2], dtype='float32')
          conv6 = fluid.layers.data(name='conv6', shape=[128, 1, 1], dtype='float32')

Q
update  
qiaolongfei 已提交
1887
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
1888
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1898 1899
    """

C
chengduoZH 已提交
1900
    def _reshape_with_axis_(input, axis=1):
1901
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1902
        return out
1903

1904 1905
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1906

C
chengduoZH 已提交
1907 1908 1909 1910
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1911 1912
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1913

C
chengduoZH 已提交
1914 1915 1916 1917 1918
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1919
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1920 1921 1922
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1923
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1924 1925 1926 1927 1928
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1952 1953
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1954 1955
    box_results = []
    var_results = []
C
chengduoZH 已提交
1956 1957
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1958 1959
        max_size = max_sizes[i]

1960
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1961
            min_size = [min_size]
C
chengduoZH 已提交
1962 1963
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1964 1965 1966 1967

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1968
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1969
                aspect_ratio = [aspect_ratio]
1970
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1971

1972
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1973 1974
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1975 1976 1977 1978 1979

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1980

1981
        # get loc
Y
Yuan Gao 已提交
1982
        num_loc_output = num_boxes * 4
1983
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1984
            input=input,
1985 1986 1987 1988 1989
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1990
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1991
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
1992
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1993

1994
        # get conf
C
chengduoZH 已提交
1995
        num_conf_output = num_boxes * num_classes
1996
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1997
            input=input,
1998 1999 2000 2001
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2002
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2003
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2004
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2005

C
chengduoZH 已提交
2006 2007 2008
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2009 2010
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2020
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2021
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2022
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2023 2024
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2025

2026 2027
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2028
    return mbox_locs_concat, mbox_confs_concat, box, var
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2063 2064

    Returns:
W
wangguanzhong 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2077 2078 2079 2080 2081 2082


    Examples:

        .. code-block:: python

2083
            import paddle.fluid as fluid
2084
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2085
            anchor, var = fluid.layers.anchor_generator(
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2119 2120
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2121 2122 2123 2124 2125 2126 2127 2128 2129
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2130 2131


W
whs 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
S
SunGaofeng 已提交
2152
        transformed_width (integer): The width of transformed output.
W
whs 已提交
2153 2154 2155
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
2156 2157 2158 2159 2160 2161 2162 2163 2164
            tuple: A tuple with three Variables. (out, mask, transform_matrix)

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
            (num_rois, channels, transformed_h, transformed_w).

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
            (num_rois, 1, transformed_h, transformed_w).

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
2165
            a 2-D tensor with shape (num_rois, 9).
W
whs 已提交
2166 2167 2168 2169

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2170
            import paddle.fluid as fluid
2171

S
SunGaofeng 已提交
2172 2173
            x = fluid.layers.data(name='x', shape=[256, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[8], lod_level=1, dtype='float32')
2174
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2175 2176 2177
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2178
    out = helper.create_variable_for_type_inference(dtype)
2179 2180
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2181 2182
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2183 2184 2185 2186
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2187 2188 2189
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2190 2191 2192
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2193
        },
W
whs 已提交
2194 2195 2196 2197 2198
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2199
    return out, mask, transform_matrix
W
whs 已提交
2200 2201


2202 2203
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2204
                             is_crowd,
2205
                             gt_boxes,
2206
                             im_info,
2207 2208 2209 2210 2211 2212
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2213
                             class_nums=None,
2214 2215 2216
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2217
    """
2218

2219
    ** Generate Proposal Labels of Faster-RCNN **
2220

B
buxingyuan 已提交
2221
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2222
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2223 2224 2225

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2226
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2227 2228
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2229
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2230
    then we apply random sampling to make sure
B
buxingyuan 已提交
2231
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
2251 2252
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            rpn_rois = fluid.layers.data(name='rpn_rois', shape=[2, 4],
                           append_batch_size=False, dtype='float32')
            gt_classes = fluid.layers.data(name='gt_classes', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            is_crowd = fluid.layers.data(name='is_crowd', shape=[8, 1],
                           append_batch_size=False, dtype='float32')
            gt_boxes = fluid.layers.data(name='gt_boxes', shape=[8, 4],
                           append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[10, 3],
                           append_batch_size=False, dtype='float32')
2268
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2269 2270 2271
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2272 2273 2274 2275
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2285 2286 2287 2288 2289 2290

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2291
            'IsCrowd': is_crowd,
2292
            'GtBoxes': gt_boxes,
2293
            'ImInfo': im_info
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2309
            'class_nums': class_nums,
2310 2311 2312
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

2404 2405
          import paddle.fluid as fluid

2406 2407 2408 2409 2410 2411 2412 2413
          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
2414
          # rois, roi_labels can be the output of
2415
          # fluid.layers.generate_proposal_labels.
2416 2417 2418 2419
          rois = fluid.layers.data(name="rois", shape=[4],
              dtype="float32", lod_level=1)
          roi_labels = fluid.layers.data(name="roi_labels", shape=[1],
              dtype="int32", lod_level=1)
2420 2421 2422 2423 2424 2425
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2426
              labels_int32=roi_labels,
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2476 2477
    **Generate proposal Faster-RCNN**

2478 2479 2480 2481
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2482 2483 2484 2485
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2486 2487
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2488 2489 2490 2491 2492 2493
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2494 2495 2496 2497 2498 2499 2500 2501 2502
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2503
            between origin image size and the size of feature map.
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
2515
        nms_thresh(float): Threshold in NMS, 0.5 by default.
2516 2517 2518 2519
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
B
Bai Yifan 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
            scores = fluid.layers.data(name='scores', shape=[2, 4, 5, 5],
                         append_batch_size=False, dtype='float32')
            bbox_deltas = fluid.layers.data(name='bbox_deltas', shape=[2, 16, 5, 5],
                         append_batch_size=False, dtype='float32')
            im_info = fluid.layers.data(name='im_info', shape=[2, 3],
                         append_batch_size=False, dtype='float32')
            anchors = fluid.layers.data(name='anchors', shape=[5, 5, 4, 4],
                         append_batch_size=False, dtype='float32')
            variances = fluid.layers.data(name='variances', shape=[5, 5, 10, 4],
                         append_batch_size=False, dtype='float32')
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2538 2539 2540
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2541 2542 2543 2544
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2567 2568


J
jerrywgz 已提交
2569
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2570 2571
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2572
    For each input box, The formula is given as follows:
2573 2574 2575
        
    .. code-block:: text

J
jerrywgz 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2587 2588

    Args:
W
wangguanzhong 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
            (height, width, scale) represeting the information of image. 
            height and width is the input size and scale is the ratio of input
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
2598 2599
    
    Returns:
W
wangguanzhong 已提交
2600 2601 2602 2603 2604
        Variable:

        output(Variable): The cliped tensor with data type float32 or float64. 
        The shape is same as input.

2605
        
J
jerrywgz 已提交
2606 2607
    Examples:
        .. code-block:: python
2608
        
2609
            import paddle.fluid as fluid
2610 2611 2612
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
2613
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2614
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2615 2616 2617
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2618
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2619
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2620
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2621

2622 2623
    return output

J
jerrywgz 已提交
2624

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
                               nms_eta=1.):
    """
    **Detection Output Layer for Retinanet.**

    This operation is to get the detection results by performing following
    steps:

    1. Decode top-scoring bounding box predictions per FPN level according 
       to the anchor boxes.
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
        bboxes(List): A list of tensors from multiple FPN levels. Each
            element is a 3-D Tensor with shape [N, Mi, 4] representing the
            predicted locations of Mi bounding boxes. N is the batch size,
            Mi is the number of bounding boxes from i-th FPN level and each 
            bounding box has four coordinate values and the layout is
            [xmin, ymin, xmax, ymax].
        scores(List): A list of tensors from multiple FPN levels. Each
            element is a 3-D Tensor with shape [N, Mi, C] representing the
            predicted confidence predictions. N is the batch size, C is the
            class number (excluding background), Mi is the number of bounding
            boxes from i-th FPN level. For each bounding box, there are total
            C scores.
        anchors(List): A 2-D Tensor with shape [Mi, 4] represents the locations
            of Mi anchor boxes from all FPN level. Each bounding box has four
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
        im_info(Variable): A 2-D LoDTensor with shape [N, 3] represents the
            image information. N is the batch size, each image information
            includes height, width and scale.
        score_threshold(float): Threshold to filter out bounding boxes
            with a confidence score.
        nms_top_k(int): Maximum number of detections per FPN layer to be
            kept according to the confidences before NMS.
        keep_top_k(int): Number of total bounding boxes to be kept per image after
            NMS step. -1 means keeping all bounding boxes after NMS step.
        nms_threshold(float): The threshold to be used in NMS.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
        Variable:
            The detection output is a LoDTensor with shape [No, 6].
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid

            bboxes = layers.data(name='bboxes', shape=[1, 21, 4],
                append_batch_size=False, dtype='float32')
            scores = layers.data(name='scores', shape=[1, 21, 10],
                append_batch_size=False, dtype='float32')
            anchors = layers.data(name='anchors', shape=[21, 4],
                append_batch_size=False, dtype='float32')
            im_info = layers.data(name="im_info", shape=[1, 3],
                append_batch_size=False, dtype='float32')
            nmsed_outs = fluid.layers.retinanet_detection_output(
                                                    bboxes=[bboxes, bboxes],
                                                    scores=[scores, scores],
                                                    anchors=[anchors, anchors],
                                                    im_info=im_info,
                                                    score_threshold=0.05,
                                                    nms_top_k=1000,
                                                    keep_top_k=100,
                                                    nms_threshold=0.3,
                                                    nms_eta=1.)
    """

    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
2732 2733 2734 2735 2736
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2737
                   nms_threshold=0.3,
J
jerrywgz 已提交
2738 2739
                   normalized=True,
                   nms_eta=1.,
2740 2741
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2742
    """
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
2771

2772 2773 2774 2775 2776 2777 2778

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
2779 2780 2781 2782 2783 2784 2785 2786
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
2787
                           The data type is float32 or float64.
2788 2789
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
2790
                           class number. The data type is float32 or float64.   
2791 2792 2793 2794 2795 2796 2797
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
2798
                           of BBoxes.The data type is float32 or float64. 
2799 2800 2801
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
2802
                           case with shape [M, C, 4].The data type is float32 or float64. 
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
2820
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
2821 2822 2823 2824 2825
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2826 2827 2828 2829
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2830

2831

2832 2833 2834
    Examples:
        .. code-block:: python

2835

2836
            import paddle.fluid as fluid
2837
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
2838
                                      dtype='float32', lod_level=1)
2839
            scores = fluid.data(name='scores', shape=[None,81],
2840 2841 2842 2843 2844 2845 2846 2847 2848
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2869 2870

    return output
2871 2872


2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
def multiclass_nms2(bboxes,
                    scores,
                    score_threshold,
                    nms_top_k,
                    keep_top_k,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=0,
                    return_index=False,
                    name=None):
    """
    **Multiclass NMS2**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

        Out: A 2-D LoDTensor with shape [No, 6] represents the detections. 
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] 
        or A 2-D LoDTensor with shape [No, 10] represents the detections. 
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3, 
        x4, y4]. No is the total number of detections. 

        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).

        Index: Only return when return_index is True. A 2-D LoDTensor with 
        shape [No, 1] represents the selected index which type is Integer. 
        The index is the absolute value cross batches. No is the same number 
        as Out. If the index is used to gather other attribute such as age, 
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where 
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output,
                 'Index': index})
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output


3008 3009 3010 3011 3012 3013 3014
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
W
wangguanzhong 已提交
3015 3016 3017 3018 3019 3020
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3021
    
J
jerrywgz 已提交
3022
    .. math::
3023

J
jerrywgz 已提交
3024
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3025

J
jerrywgz 已提交
3026 3027 3028
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3029 3030

    Args:
W
wangguanzhong 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3043

3044
    Returns:
W
wangguanzhong 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3055 3056 3057 3058

    Examples:
        .. code-block:: python

3059
            import paddle.fluid as fluid
3060 3061
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3062
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3063 3064 3065
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3066 3067 3068 3069 3070
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
3071
    dtype = helper.input_dtype('fpn_rois')
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3089 3090


3091
@templatedoc()
J
jerrywgz 已提交
3092 3093 3094 3095 3096 3097
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3098 3099 3100 3101 3102 3103 3104
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3105
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3106 3107 3108 3109
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3110
    Returns:
W
wangguanzhong 已提交
3111
        Tuple:
J
jerrywgz 已提交
3112

W
wangguanzhong 已提交
3113 3114 3115
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3116 3117


3118 3119 3120
    Examples:
        .. code-block:: python

3121
            import paddle.fluid as fluid
3122 3123 3124 3125 3126 3127 3128 3129
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3130
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3131
                pb, pbv, loc, scores, 4.135)
3132 3133 3134 3135

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3136
    decoded_box = helper.create_variable_for_type_inference(
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3151
            "DecodeBox": decoded_box,
3152 3153
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3154
    return decoded_box, output_assign_box
3155 3156 3157 3158 3159 3160 3161 3162 3163


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
W
wangguanzhong 已提交
3164 3165 3166
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3167 3168 3169 3170 3171 3172 3173 3174

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3175 3176 3177 3178 3179 3180
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3181 3182 3183
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3184 3185 3186 3187
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3188
    Returns:
W
wangguanzhong 已提交
3189 3190 3191 3192 3193
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3194 3195 3196 3197

    Examples:
        .. code-block:: python
           
3198
            import paddle.fluid as fluid
3199 3200 3201
            multi_rois = []
            multi_scores = []
            for i in range(4):
3202 3203
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3204
            for i in range(4):
3205 3206
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois