detection.py 150.0 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'rpn_target_assign',
42
    'retinanet_target_assign',
43
    'sigmoid_focal_loss',
44 45 46 47
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
48
    'generate_mask_labels',
49 50 51 52
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
D
dengkaipeng 已提交
53
    'yolo_box',
54
    'box_clip',
J
jerrywgz 已提交
55
    'multiclass_nms',
56
    'locality_aware_nms',
57
    'retinanet_detection_output',
58
    'distribute_fpn_proposals',
59
    'box_decoder_and_assign',
60
    'collect_fpn_proposals',
C
chengduoZH 已提交
61
]
62 63


64 65 66 67 68 69 70 71 72 73 74 75
def retinanet_target_assign(bbox_pred,
                            cls_logits,
                            anchor_box,
                            anchor_var,
                            gt_boxes,
                            gt_labels,
                            is_crowd,
                            im_info,
                            num_classes=1,
                            positive_overlap=0.5,
                            negative_overlap=0.4):
    """
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    **Target Assign Layer for the detector RetinaNet.**

    This OP finds out positive and negative samples from all anchors
    for training the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ ,
    and assigns target labels for classification along with target locations for
    regression to each sample, then takes out the part belonging to positive and
    negative samples from category prediction( :attr:`cls_logits`) and location
    prediction( :attr:`bbox_pred`) which belong to all anchors.

    The searching principles for positive and negative samples are as followed:

    1. Anchors are assigned to ground-truth boxes when it has the highest IoU
    overlap with a ground-truth box.

    2. Anchors are assigned to ground-truth boxes when it has an IoU overlap
    higher than :attr:`positive_overlap` with any ground-truth box.

    3. Anchors are assigned to background when its IoU overlap is lower than
    :attr:`negative_overlap` for all ground-truth boxes.

    4. Anchors which do not meet the above conditions do not participate in
    the training process.

    Retinanet predicts a :math:`C`-vector for classification and a 4-vector for box
    regresion for each anchor, hence the target label for each positive(or negative)
    sample is a :math:`C`-vector and the target locations for each positive sample
    is a 4-vector. As for a positive sample, if the category of its assigned
    ground-truth box is class :math:`i`, the corresponding entry in its length
    :math:`C` label vector is set to 1 and all other entries is set to 0, its box
    regression targets are computed as the offset between itself and its assigned
    ground-truth box. As for a negative sample, all entries in its length :math:`C`
    label vector are set to 0 and box regression targets are omitted because
    negative samples do not participate in the training process of location
    regression.

    After the assignment, the part belonging to positive and negative samples is
    taken out from category prediction( :attr:`cls_logits` ), and the part
    belonging to positive samples is taken out from location
    prediction( :attr:`bbox_pred` ).
115 116

    Args:
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        bbox_pred(Variable): A 3-D Tensor with shape :math:`[N, M, 4]` represents
            the predicted locations of all anchors. :math:`N` is the batch size( the
            number of images in a mini-batch), :math:`M` is the number of all anchors
            of one image, and each anchor has 4 coordinate values. The data type of
            :attr:`bbox_pred` is float32 or float64.
        cls_logits(Variable): A 3-D Tensor with shape :math:`[N, M, C]` represents
            the predicted categories of all anchors. :math:`N` is the batch size,
            :math:`M` is the number of all anchors of one image, and :math:`C` is
            the number of categories (**Notice: excluding background**). The data type
            of :attr:`cls_logits` is float32 or float64.
        anchor_box(Variable): A 2-D Tensor with shape :math:`[M, 4]` represents
            the locations of all anchors. :math:`M` is the number of all anchors of
            one image, each anchor is represented as :math:`[xmin, ymin, xmax, ymax]`,
            :math:`[xmin, ymin]` is the left top coordinate of the anchor box,
            :math:`[xmax, ymax]` is the right bottom coordinate of the anchor box.
            The data type of :attr:`anchor_box` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator` 
            for the generation of :attr:`anchor_box`.
        anchor_var(Variable): A 2-D Tensor with shape :math:`[M,4]` represents the expanded 
            factors of anchor locations used in loss function. :math:`M` is number of
            all anchors of one image, each anchor possesses a 4-vector expanded factor.
            The data type of :attr:`anchor_var` is float32 or float64. Please refer
            to the OP :ref:`api_fluid_layers_anchor_generator`
            for the generation of :attr:`anchor_var`.
        gt_boxes(Variable): A 1-level 2-D LoDTensor with shape :math:`[G, 4]` represents
            locations of all ground-truth boxes. :math:`G` is the total number of
            all ground-truth boxes in a mini-batch, and each ground-truth box has 4
            coordinate values. The data type of :attr:`gt_boxes` is float32 or
            float64.
        gt_labels(variable): A 1-level 2-D LoDTensor with shape :math:`[G, 1]` represents
            categories of all ground-truth boxes, and the values are in the range of
            :math:`[1, C]`. :math:`G` is the total number of all ground-truth boxes
            in a mini-batch, and each ground-truth box has one category. The data type
            of :attr:`gt_labels` is int32.
        is_crowd(Variable): A 1-level 1-D LoDTensor with shape :math:`[G]` which
            indicates whether a ground-truth box is a crowd. If the value is 1, the
            corresponding box is a crowd, it is ignored during training. :math:`G` is
            the total number of all ground-truth boxes in a mini-batch. The data type
            of :attr:`is_crowd` is int32.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents the size
            information of input images. :math:`N` is the batch size, the size
            informarion of each image is a 3-vector which are the height and width
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
        num_classes(int32): The number of categories for classification, the default
            value is 1.
        positive_overlap(float32): Minimum overlap required between an anchor
            and ground-truth box for the anchor to be a positive sample, the default
            value is 0.5.
        negative_overlap(float32): Maximum overlap allowed between an anchor
            and ground-truth box for the anchor to be a negative sample, the default
            value is 0.4. :attr:`negative_overlap` should be less than or equal to
            :attr:`positive_overlap`, if not, the actual value of
            :attr:`positive_overlap` is :attr:`negative_overlap`.
171 172

    Returns:
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        A tuple with 6 Variables:
        
        **predict_scores** (Variable): A 2-D Tensor with shape :math:`[F+B, C]` represents
        category prediction belonging to positive and negative samples. :math:`F`
        is the number of positive samples in a mini-batch, :math:`B` is the number
        of negative samples, and :math:`C` is the number of categories
        (**Notice: excluding background**). The data type of :attr:`predict_scores`
        is float32 or float64.

        **predict_location** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        location prediction belonging to positive samples. :math:`F` is the number
        of positive samples. :math:`F` is the number of positive samples, and each
        sample has 4 coordinate values. The data type of :attr:`predict_location`
        is float32 or float64.

        **target_label** (Variable): A 2-D Tensor with shape :math:`[F+B, 1]` represents
        target labels for classification belonging to positive and negative
        samples. :math:`F` is the number of positive samples, :math:`B` is the
        number of negative, and each sample has one target category. The data type
        of :attr:`target_label` is int32.

        **target_bbox** (Variable): A 2-D Tensor with shape :math:`[F, 4]` represents
        target locations for box regression belonging to positive samples.
        :math:`F` is the number of positive samples, and each sample has 4
        coordinate values. The data type of :attr:`target_bbox` is float32 or
        float64.

        **bbox_inside_weight** (Variable): A 2-D Tensor with shape :math:`[F, 4]`
        represents whether a positive sample is fake positive, if a positive
        sample is false positive, the corresponding entries in
        :attr:`bbox_inside_weight` are set 0, otherwise 1. :math:`F` is the number
        of total positive samples in a mini-batch, and each sample has 4
        coordinate values. The data type of :attr:`bbox_inside_weight` is float32
        or float64.

        **fg_num** (Variable): A 2-D Tensor with shape :math:`[N, 1]` represents the number
        of positive samples. :math:`N` is the batch size. **Notice: The number
        of positive samples is used as the denominator of later loss function,
        to avoid the condition that the denominator is zero, this OP has added 1
        to the actual number of positive samples of each image.** The data type of
        :attr:`fg_num` is int32.
214 215 216 217 218

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
          bbox_pred = fluid.data(name='bbox_pred', shape=[1, 100, 4],
                            dtype='float32')
          cls_logits = fluid.data(name='cls_logits', shape=[1, 100, 10],
                            dtype='float32')
          anchor_box = fluid.data(name='anchor_box', shape=[100, 4],
                            dtype='float32')
          anchor_var = fluid.data(name='anchor_var', shape=[100, 4],
                            dtype='float32')
          gt_boxes = fluid.data(name='gt_boxes', shape=[10, 4],
                            dtype='float32')
          gt_labels = fluid.data(name='gt_labels', shape=[10, 1],
                            dtype='float32')
          is_crowd = fluid.data(name='is_crowd', shape=[1],
                            dtype='float32')
          im_info = fluid.data(name='im_infoss', shape=[1, 3],
                            dtype='float32')
          score_pred, loc_pred, score_target, loc_target, bbox_inside_weight, fg_num =
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                fluid.layers.retinanet_target_assign(bbox_pred, cls_logits, anchor_box,
                anchor_var, gt_boxes, gt_labels, is_crowd, im_info, 10)

    """

    helper = LayerHelper('retinanet_target_assign', **locals())
    # Assign target label to anchors
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    fg_num = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="retinanet_target_assign",
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'GtLabels': gt_labels,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
            'TargetBBox': target_bbox,
            'BBoxInsideWeight': bbox_inside_weight,
            'ForegroundNumber': fg_num
        },
        attrs={
            'positive_overlap': positive_overlap,
            'negative_overlap': negative_overlap
        })

    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
    bbox_inside_weight.stop_gradient = True
    fg_num.stop_gradient = True

    cls_logits = nn.reshape(x=cls_logits, shape=(-1, num_classes))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)

    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight, fg_num


288 289
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
290
                      anchor_box,
291
                      anchor_var,
292 293 294
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
295
                      rpn_batch_size_per_im=256,
296 297
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
298
                      rpn_positive_overlap=0.7,
299 300
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
301
    """
H
haowang101779990 已提交
302
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
320
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
321 322
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
323
            is [xmin, ymin, xmax, ymax]. The data type can be float32 or float64.
324 325 326
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
327
            The data type can be float32 or float64.
Y
Yuan Gao 已提交
328 329 330 331 332
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
333
            coordinate of the anchor box. The data type can be float32 or float64.
334
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
335
            variances of anchors. The data type can be float32 or float64.
翟飞跃 已提交
336
        gt_boxes (Variable): The ground-truth bounding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
337
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
338
            bboxes of mini-batch input. The data type can be float32 or float64.
339
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
340
                             The data type must be int32.
341 342
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
343
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
344
                                    The data type must be int32.
345
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
346
            by straddle_thresh pixels. The data type must be float32.
347
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
348
            foreground (i.e. class > 0), 0-th class is background. The data type must be float32.
Y
Yuan Gao 已提交
349 350
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
351
            example. The data type must be float32.
Y
Yuan Gao 已提交
352 353
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
354
            examples. The data type must be float32.
Y
Yuan Gao 已提交
355 356

    Returns:
M
minqiyang 已提交
357
        tuple:
358 359 360 361 362 363 364 365 366 367 368 369 370
        A tuple(predicted_scores, predicted_location, target_label,
        target_bbox, bbox_inside_weight) is returned. The predicted_scores 
        and predicted_location is the predicted result of the RPN.
        The target_label and target_bbox is the ground truth,
        respectively. The predicted_location is a 2D Tensor with shape
        [F, 4], and the shape of target_bbox is same as the shape of
        the predicted_location, F is the number of the foreground
        anchors. The predicted_scores is a 2D Tensor with shape
        [F + B, 1], and the shape of target_label is same as the shape
        of the predicted_scores, B is the number of the background
        anchors, the F and B is depends on the input of this operator.
        Bbox_inside_weight represents whether the predicted loc is fake_fg
        or not and the shape is [F, 4].
Y
Yuan Gao 已提交
371 372 373 374

    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
375
            import paddle.fluid as fluid
376 377 378 379 380 381 382
            bbox_pred = fluid.data(name='bbox_pred', shape=[None, 4], dtype='float32')
            cls_logits = fluid.data(name='cls_logits', shape=[None, 1], dtype='float32')
            anchor_box = fluid.data(name='anchor_box', shape=[None, 4], dtype='float32')
            anchor_var = fluid.data(name='anchor_var', shape=[None, 4], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None], dtype='float32')
            im_info = fluid.data(name='im_infoss', shape=[None, 3], dtype='float32')
383 384
            loc, score, loc_target, score_target, inside_weight = fluid.layers.rpn_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info)
H
haowang101779990 已提交
385

Y
Yuan Gao 已提交
386 387 388
    """

    helper = LayerHelper('rpn_target_assign', **locals())
389
    # Assign target label to anchors
J
jerrywgz 已提交
390 391 392 393 394 395 396
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
397 398
    helper.append_op(
        type="rpn_target_assign",
399 400 401 402 403 404
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
405 406 407
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
408
            'TargetLabel': target_label,
J
jerrywgz 已提交
409
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
410
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
411 412 413
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
414
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
415 416
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
417 418
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
419 420
        })

421 422 423 424
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
425
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
426

427 428 429 430
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
431

J
jerrywgz 已提交
432
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
433 434


435 436 437 438
def sigmoid_focal_loss(x, label, fg_num, gamma=2, alpha=0.25):
    """
    **Sigmoid Focal Loss Operator.**

439 440 441 442 443
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is used to address the foreground-background
    class imbalance existed on the training phase of many computer vision tasks. This OP computes
    the sigmoid value for each element in the input tensor :attr:`x`, after which focal loss is
    measured between the sigmoid value and target label. 

444 445 446
    The focal loss is given as followed:

    .. math::
447 448 449 450 451 452 453
  
        \\mathop{loss_{i,\\,j}}\\limits_{i\\in\\mathbb{[0,\\,N-1]},\\,j\\in\\mathbb{[0,\\,C-1]}}=\\left\\{
        \\begin{array}{rcl}
        - \\frac{1}{fg\_num} * \\alpha * {(1 - \\sigma(x_{i,\\,j}))}^{\\gamma} * \\log(\\sigma(x_{i,\\,j})) & & {(j +1) = label_{i,\\,0}} \\\\
        - \\frac{1}{fg\_num} * (1 - \\alpha) * {\sigma(x_{i,\\,j})}^{ \\gamma} * \\log(1 - \\sigma(x_{i,\\,j})) & & {(j +1)!= label_{i,\\,0}}
        \\end{array} \\right.

454 455 456 457 458 459 460

    We know that
    
    .. math::
        \\sigma(x_j) = \\frac{1}{1 + \\exp(-x_j)}


461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    Args:
        x(Variable): A 2-D tensor with shape :math:`[N, C]` represents the predicted categories of
            all samples. :math:`N` is the number of all samples responsible for optimization in
            a mini-batch, for example, samples are anchor boxes for object detection and :math:`N`
            is the total number of positive and negative samples in a mini-batch; Samples are images
            for image classification and :math:`N` is the number of images in a mini-batch. :math:`C`
            is the number of classes (**Notice: excluding background**). The data type of :attr:`x` is
            float32 or float64.
        label(Variable): A 2-D tensor with shape :math:`[N, 1]` represents the target labels for
            classification. :math:`N` is the number of all samples responsible for optimization in a
            mini-batch, each sample has one target category. The values for positive samples are in the
            range of :math:`[1, C]`, and the values for negative samples are 0. The data type of :attr:`label`
            is int32.
        fg_num(Variable): A 1-D tensor with shape [1] represents the number of positive samples in a
            mini-batch, which should be obtained before this OP. The data type of :attr:`fg_num` is int32.
476 477 478 479 480 481
        gamma(float): Hyper-parameter to balance the easy and hard examples. Default value is
            set to 2.0.
        alpha(float): Hyper-parameter to balance the positive and negative example. Default value
            is set to 0.25.

    Returns:
482 483 484
        Variable(the data type is float32 or float64): 
            A 2-D tensor with shape :math:`[N, C]`, which is the focal loss of each element in the input
            tensor :attr:`x`.
485 486 487 488 489 490

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

491 492 493
            input = fluid.data(name='data', shape=[10,80], dtype='float32')
            label = fluid.data(name='label', shape=[10,1], dtype='int32')
            fg_num = fluid.data(name='fg_num', shape=[1], dtype='int32')
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
            loss = fluid.layers.sigmoid_focal_loss(x=input,
                                                   label=label,
                                                   fg_num=fg_num,
                                                   gamma=2.,
                                                   alpha=0.25)
    """

    helper = LayerHelper("sigmoid_focal_loss", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="sigmoid_focal_loss",
        inputs={"X": x,
                "Label": label,
                "FgNum": fg_num},
        attrs={"gamma": gamma,
               'alpha': alpha},
        outputs={"Out": out})
    return out


Y
Yuan Gao 已提交
516 517
def detection_output(loc,
                     scores,
518 519 520 521 522 523 524
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
525 526
                     nms_eta=1.0,
                     return_index=False):
527
    """
Q
qingqing01 已提交
528 529
    Given the regression locations, classification confidences and prior boxes,
    calculate the detection outputs by performing following steps:
530

Q
qingqing01 已提交
531 532
    1. Decode input bounding box predictions according to the prior boxes and
       regression locations.
533 534 535 536 537
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
538 539 540

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Q
qingqing01 已提交
541 542
            predicted locations of M bounding bboxes. Data type should be
            float32 or float64. N is the batch size,
543 544
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
545
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
Q
qingqing01 已提交
546 547 548
            predicted confidence predictions. Data type should be float32
            or float64. N is the batch size, C is the
            class number, M is number of bounding boxes.
549
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
Q
qingqing01 已提交
550 551
            each box is represented as [xmin, ymin, xmax, ymax]. Data type
            should be float32 or float64.
552
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
Q
qingqing01 已提交
553 554
            of variance. Data type should be float32 or float64.
        background_label(int): The index of background label,
555
            the background label will be ignored. If set to -1, then all
Q
qingqing01 已提交
556 557
            categories will be considered. Default: 0.
        nms_threshold(float): The threshold to be used in NMS. Default: 0.3.
558
        nms_top_k(int): Maximum number of detections to be kept according
Q
qingqing01 已提交
559 560
            to the confidences aftern filtering detections based on
            score_threshold and before NMS. Default: 400.
561
        keep_top_k(int): Number of total bboxes to be kept per image after
Q
qingqing01 已提交
562
            NMS step. -1 means keeping all bboxes after NMS step. Default: 200.
563 564
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
Q
qingqing01 已提交
565 566 567
            Default: 0.01.
        nms_eta(float): The parameter for adaptive NMS. It works only when the
            value is less than 1.0. Default: 1.0.
568
        return_index(bool): Whether return selected index. Default: False
569 570

    Returns:
M
minqiyang 已提交
571

572 573 574
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 

Q
qingqing01 已提交
575 576 577 578 579 580 581 582 583 584 585 586
        Out (Variable): The detection outputs is a LoDTensor with shape [No, 6].
        Data type is the same as input (loc). Each row has six values:
        [label, confidence, xmin, ymin, xmax, ymax]. `No` is
        the total number of detections in this mini-batch. For each instance,
        the offsets in first dimension are called LoD, the offset number is
        N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]`
        detected results, if it is 0, the i-th image has no detected results.

        Index (Variable): Only return when return_index is True. A 2-D LoDTensor
        with shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
587 588 589
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
        N is the batch size and M is the number of boxes.

590 591 592 593

    Examples:
        .. code-block:: python

594 595
            import paddle.fluid as fluid

Q
qingqing01 已提交
596 597 598 599
            pb = fluid.data(name='prior_box', shape=[10, 4], dtype='float32')
            pbv = fluid.data(name='prior_box_var', shape=[10, 4], dtype='float32')
            loc = fluid.data(name='target_box', shape=[2, 21, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[2, 21, 10], dtype='float32')
600
            nmsed_outs, index = fluid.layers.detection_output(scores=scores,
601 602
                                       loc=loc,
                                       prior_box=pb,
603 604
                                       prior_box_var=pbv,
                                       return_index=True)
605 606
    """
    helper = LayerHelper("detection_output", **locals())
607 608 609 610 611
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
612
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
613
    scores = nn.transpose(scores, perm=[0, 2, 1])
614
    scores.stop_gradient = True
X
Xin Pan 已提交
615 616
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    if return_index:
        index = helper.create_variable_for_type_inference(dtype='int')
        helper.append_op(
            type="multiclass_nms2",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs,
                     'Index': index},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
        index.stop_gradient = True
    else:
        helper.append_op(
            type="multiclass_nms",
            inputs={'Scores': scores,
                    'BBoxes': decoded_box},
            outputs={'Out': nmsed_outs},
            attrs={
                'background_label': 0,
                'nms_threshold': nms_threshold,
                'nms_top_k': nms_top_k,
                'keep_top_k': keep_top_k,
                'score_threshold': score_threshold,
                'nms_eta': 1.0,
            })
648
    nmsed_outs.stop_gradient = True
649 650
    if return_index:
        return nmsed_outs, index
651
    return nmsed_outs
C
chengduoZH 已提交
652 653


X
Xin Pan 已提交
654 655 656 657 658 659
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
L
LielinJiang 已提交
660 661
        x (Variable): ${x_comment}.The data type is float32 or float64.
        y (Variable): ${y_comment}.The data type is float32 or float64.
X
Xin Pan 已提交
662 663

    Returns:
L
LielinJiang 已提交
664
        Variable: ${out_comment}.The data type is same with x.
665 666 667 668

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
669
            import numpy as np
670 671
            import paddle.fluid as fluid

L
LielinJiang 已提交
672 673 674 675 676 677
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            x = fluid.data(name='x', shape=[None, 4], dtype='float32')
            y = fluid.data(name='y', shape=[None, 4], dtype='float32')
678
            iou = fluid.layers.iou_similarity(x=x, y=y)
L
LielinJiang 已提交
679 680 681 682 683 684 685 686 687 688 689

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_iou] = exe.run(test_program,
                    fetch_list=iou,
                    feed={'x': np.array([[0.5, 0.5, 2.0, 2.0],
                                         [0., 0., 1.0, 1.0]]).astype('float32'),
                          'y': np.array([[1.0, 1.0, 2.5, 2.5]]).astype('float32')})
            # out_iou is [[0.2857143],
            #             [0.       ]] with shape: [2, 1]
X
Xin Pan 已提交
690 691 692
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
693
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
713 714
              name=None,
              axis=0):
X
Xin Pan 已提交
715
    """
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
754 755

    Args:
756
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
W
wangguanzhong 已提交
757 758 759 760 761 762 763 764 765 766
            [M, 4] holds M boxes and data type is float32 or float64. Each box
            is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
            left top coordinate of the anchor box, if the input is image feature
            map, they are close to the origin of the coordinate system. 
            [xmax, ymax] is the right bottom coordinate of the anchor box.       
        prior_box_var(List|Variable|None): prior_box_var supports three types 
            of input. One is variable with shape [M, 4] which holds M group and 
            data type is float32 or float64. The second is list consist of 
            4 elements shared by all boxes and data type is float32 or float64. 
            Other is None and not involved in calculation. 
767
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
W
wangguanzhong 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780
            [N, 4] when code_type is 'encode_center_size'. This input also can 
            be a 3-D Tensor with shape [N, M, 4] when code_type is 
            'decode_center_size'. Each box is represented as 
            [xmin, ymin, xmax, ymax]. The data type is float32 or float64. 
            This tensor can contain LoD information to represent a batch of inputs. 
        code_type(str): The code type used with the target box. It can be
            `encode_center_size` or `decode_center_size`. `encode_center_size` 
            by default.
        box_normalized(bool): Whether treat the priorbox as a noramlized box.
            Set true by default.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
781
        axis(int): Which axis in PriorBox to broadcast for box decode, 
W
wangguanzhong 已提交
782 783 784 785
            for example, if axis is 0 and TargetBox has shape [N, M, 4] and 
            PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
            for decoding. It is only valid when code type is 
            `decode_center_size`. Set 0 by default. 
X
Xin Pan 已提交
786 787

    Returns:
W
wangguanzhong 已提交
788 789
        Variable:

790
        output_box(Variable): When code_type is 'encode_center_size', the 
W
wangguanzhong 已提交
791 792 793 794
        output tensor of box_coder_op with shape [N, M, 4] representing the 
        result of N target boxes encoded with M Prior boxes and variances. 
        When code_type is 'decode_center_size', N represents the batch size 
        and M represents the number of deocded boxes.
795 796 797 798 799

    Examples:
 
        .. code-block:: python
 
800
            import paddle.fluid as fluid
W
wangguanzhong 已提交
801
            # For encode
802
            prior_box_encode = fluid.data(name='prior_box_encode',
W
wangguanzhong 已提交
803
                                  shape=[512, 4],
804 805 806 807
                                  dtype='float32')
            target_box_encode = fluid.data(name='target_box_encode',
                                   shape=[81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
808 809 810 811 812
            output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_encode,
                                    code_type="encode_center_size")
            # For decode
813
            prior_box_decode = fluid.data(name='prior_box_decode',
W
wangguanzhong 已提交
814
                                  shape=[512, 4],
815 816 817 818
                                  dtype='float32')
            target_box_decode = fluid.data(name='target_box_decode',
                                   shape=[512, 81, 4],
                                   dtype='float32')
W
wangguanzhong 已提交
819 820 821 822 823 824
            output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
                                    prior_box_var=[0.1,0.1,0.2,0.2],
                                    target_box=target_box_decode,
                                    code_type="decode_center_size",
                                    box_normalized=False,
                                    axis=1)
X
Xin Pan 已提交
825 826 827 828
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
829 830
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
831 832 833 834
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

835 836 837 838 839 840 841 842 843 844 845 846
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
847 848
    helper.append_op(
        type="box_coder",
849 850
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
851 852 853 854 855 856 857 858 859 860
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
861 862 863 864
        input(Variable): The input with shape [batch_size, geometry_channels, height, width].
                         A Tensor with type float32, float64.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
X
Xin Pan 已提交
865 866

    Returns:
867
        Variable: The output with the same shape as input. A Tensor with type float32, float64.
B
Bai Yifan 已提交
868 869 870 871 872

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
B
Bai Yifan 已提交
873
            input = fluid.data(name='input', shape=[4, 10, 5, 5], dtype='float32')
B
Bai Yifan 已提交
874
            out = fluid.layers.polygon_box_transform(input)
X
Xin Pan 已提交
875 876 877
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
878
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
879 880 881 882 883 884 885 886 887 888 889 890
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
891 892
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
893 894
                gt_box,
                gt_label,
D
dengkaipeng 已提交
895
                anchors,
896
                anchor_mask,
D
dengkaipeng 已提交
897 898
                class_num,
                ignore_thresh,
899
                downsample_ratio,
900
                gt_score=None,
D
dengkaipeng 已提交
901
                use_label_smooth=True,
D
dengkaipeng 已提交
902 903 904 905 906
                name=None):
    """
    ${comment}

    Args:
X
xiaoting 已提交
907
        x (Variable): ${x_comment}The data type is float32 or float64. 
908
        gt_box (Variable): groud truth boxes, should be in shape of [N, B, 4],
909 910 911 912
                          in the third dimenstion, x, y, w, h should be stored. 
                          x,y is the center cordinate of boxes, w, h are the
                          width and height, x, y, w, h should be divided by 
                          input image height to scale to [0, 1].
D
dengkaipeng 已提交
913
                          N is the batch number and B is the max box number in 
X
xiaoting 已提交
914
                          an image.The data type is float32 or float64. 
915
        gt_label (Variable): class id of ground truth boxes, shoud be in shape
X
xiaoting 已提交
916
                            of [N, B].The data type is int32. 
D
dengkaipeng 已提交
917
        anchors (list|tuple): ${anchors_comment}
918
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
919 920
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
921
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
922 923 924
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
925
        gt_score (Variable): mixup score of ground truth boxes, shoud be in shape
926
                            of [N, B]. Default None.
927
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
928 929

    Returns:
930
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
931 932 933

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
934 935
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
936
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
937 938 939
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
940
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
941 942

    Examples:
943 944
      .. code-block:: python

945
          import paddle.fluid as fluid
X
xiaoting 已提交
946 947 948 949
          x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
          gt_box = fluid.data(name='gt_box', shape=[None, 6, 4], dtype='float32')
          gt_label = fluid.data(name='gt_label', shape=[None, 6], dtype='int32')
          gt_score = fluid.data(name='gt_score', shape=[None, 6], dtype='float32')
950 951
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
952 953
          loss = fluid.layers.yolov3_loss(x=x, gt_box=gt_box, gt_label=gt_label,
                                          gt_score=gt_score, anchors=anchors, 
954 955
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
956 957 958 959 960
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
961
    if not isinstance(gt_box, Variable):
D
dengkaipeng 已提交
962
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
963
    if not isinstance(gt_label, Variable):
D
dengkaipeng 已提交
964
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
965
    if gt_score is not None and not isinstance(gt_score, Variable):
966
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
967 968
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
969 970
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
971 972 973 974 975
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
976 977 978
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
979 980 981 982 983 984 985

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

986 987 988
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

989 990
    inputs = {
        "X": x,
991 992
        "GTBox": gt_box,
        "GTLabel": gt_label,
993
    }
994
    if gt_score:
995
        inputs["GTScore"] = gt_score
996

D
dengkaipeng 已提交
997 998
    attrs = {
        "anchors": anchors,
999
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
1000 1001
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
1002
        "downsample_ratio": downsample_ratio,
1003
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
1004 1005 1006 1007
    }

    helper.append_op(
        type='yolov3_loss',
1008
        inputs=inputs,
1009 1010 1011 1012 1013
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
1014 1015 1016 1017
        attrs=attrs)
    return loss


D
dengkaipeng 已提交
1018
@templatedoc(op_type="yolo_box")
1019 1020 1021 1022 1023 1024 1025
def yolo_box(x,
             img_size,
             anchors,
             class_num,
             conf_thresh,
             downsample_ratio,
             name=None):
D
dengkaipeng 已提交
1026 1027 1028 1029
    """
    ${comment}

    Args:
X
xiaoting 已提交
1030 1031
        x (Variable): ${x_comment} The data type is float32 or float64. 
        img_size (Variable): ${img_size_comment} The data type is int32. 
D
dengkaipeng 已提交
1032 1033 1034 1035
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        conf_thresh (float): ${conf_thresh_comment}
        downsample_ratio (int): ${downsample_ratio_comment}
X
xiaoting 已提交
1036 1037 1038
        name (string): The default value is None.  Normally there is no need 
                       for user to set this property.  For more information, 
                       please refer to :ref:`api_guide_Name`
D
dengkaipeng 已提交
1039 1040

    Returns:
D
dengkaipeng 已提交
1041
        Variable: A 3-D tensor with shape [N, M, 4], the coordinates of boxes,
D
dengkaipeng 已提交
1042 1043
        and a 3-D tensor with shape [N, M, :attr:`class_num`], the classification 
        scores of boxes.
D
dengkaipeng 已提交
1044 1045 1046 1047 1048 1049 1050 1051

    Raises:
        TypeError: Input x of yolov_box must be Variable
        TypeError: Attr anchors of yolo box must be list or tuple
        TypeError: Attr class_num of yolo box must be an integer
        TypeError: Attr conf_thresh of yolo box must be a float number

    Examples:
D
dengkaipeng 已提交
1052

D
dengkaipeng 已提交
1053 1054
    .. code-block:: python

X
xiaoting 已提交
1055
        import paddle.fluid as fluid
X
xiaoting 已提交
1056 1057
        x = fluid.data(name='x', shape=[None, 255, 13, 13], dtype='float32')
        img_size = fluid.data(name='img_size',shape=[None, 2],dtype='int64')
D
dengkaipeng 已提交
1058
        anchors = [10, 13, 16, 30, 33, 23]
X
xiaoting 已提交
1059
        boxes,scores = fluid.layers.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, 
D
dengkaipeng 已提交
1060 1061 1062 1063 1064
                                        conf_thresh=0.01, downsample_ratio=32)
    """
    helper = LayerHelper('yolo_box', **locals())

    if not isinstance(x, Variable):
1065 1066 1067
        raise TypeError("Input x of yolo_box must be Variable")
    if not isinstance(img_size, Variable):
        raise TypeError("Input img_size of yolo_box must be Variable")
D
dengkaipeng 已提交
1068
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
1069
        raise TypeError("Attr anchors of yolo_box must be list or tuple")
D
dengkaipeng 已提交
1070
    if not isinstance(class_num, int):
1071
        raise TypeError("Attr class_num of yolo_box must be an integer")
D
dengkaipeng 已提交
1072
    if not isinstance(conf_thresh, float):
1073
        raise TypeError("Attr ignore_thresh of yolo_box must be a float number")
D
dengkaipeng 已提交
1074 1075 1076 1077 1078 1079 1080

    boxes = helper.create_variable_for_type_inference(dtype=x.dtype)
    scores = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
D
dengkaipeng 已提交
1081
        "conf_thresh": conf_thresh,
D
dengkaipeng 已提交
1082 1083 1084 1085 1086
        "downsample_ratio": downsample_ratio,
    }

    helper.append_op(
        type='yolo_box',
1087 1088 1089 1090
        inputs={
            "X": x,
            "ImgSize": img_size,
        },
D
dengkaipeng 已提交
1091 1092 1093 1094 1095 1096 1097 1098
        outputs={
            'Boxes': boxes,
            'Scores': scores,
        },
        attrs=attrs)
    return boxes, scores


X
Xin Pan 已提交
1099
@templatedoc()
1100 1101
def detection_map(detect_res,
                  label,
1102 1103
                  class_num,
                  background_label=0,
1104 1105
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
1106 1107 1108 1109
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
1121 1122 1123 1124 1125 1126 1127 1128
        input_states: (tuple|None) If not None, It contains 3 elements:
            (1) pos_count ${pos_count_comment}.
            (2) true_pos ${true_pos_comment}.
            (3) false_pos ${false_pos_comment}.
        out_states: (tuple|None) If not None, it contains 3 elements.
            (1) accum_pos_count ${accum_pos_count_comment}.
            (2) accum_true_pos ${accum_true_pos_comment}.
            (3) accum_false_pos ${accum_false_pos_comment}.
X
Xin Pan 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

1138
            import paddle.fluid as fluid
1139
            from fluid.layers import detection
1140
            detect_res = fluid.data(
X
Xin Pan 已提交
1141 1142 1143
                name='detect_res',
                shape=[10, 6],
                dtype='float32')
1144
            label = fluid.data(
X
Xin Pan 已提交
1145 1146 1147 1148
                name='label',
                shape=[10, 6],
                dtype='float32')

1149
            map_out = detection.detection_map(detect_res, label, 21)
X
Xin Pan 已提交
1150
    """
1151 1152
    helper = LayerHelper("detection_map", **locals())

1153
    def __create_var(type):
X
Xin Pan 已提交
1154
        return helper.create_variable_for_type_inference(dtype=type)
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

1167 1168 1169 1170 1171
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
1172
            'HasState': has_state,
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
1186 1187
            'ap_type': ap_version,
            'class_num': class_num,
1188
        })
1189
    return map_out
1190 1191


1192 1193 1194 1195
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
1196
    """
Y
yuyang18 已提交
1197 1198
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
1199
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
1200 1201 1202 1203
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
W
wangguanzhong 已提交
1204
    matrix. **The OP only supports CPU**.
Y
yuyang18 已提交
1205 1206 1207

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
1208 1209 1210
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
1211

Y
yuyang18 已提交
1212
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
1213 1214 1215
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
1216 1217 1218
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

1219 1220
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
W
wangguanzhong 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
            [K, M]. The data type is float32 or float64. It is pair-wise 
            distance matrix between the entities represented by each row and 
            each column. For example, assumed one entity is A with shape [K], 
            another entity is B with shape [M]. The dist_matrix[i][j] is the 
            distance between A[i] and B[j]. The bigger the distance is, the 
            better matching the pairs are. NOTE: This tensor can contain LoD 
            information to represent a batch of inputs. One instance of this 
            batch can contain different numbers of entities.
        match_type(str, optional): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        dist_threshold(float32, optional): If `match_type` is 'per_prediction',
1232
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
1233
            on the maximum distance, 0.5 by default.
W
wangguanzhong 已提交
1234 1235 1236 1237
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
 
1238
    Returns:
W
wangguanzhong 已提交
1239
        Tuple:
Y
yuyang18 已提交
1240

W
wangguanzhong 已提交
1241 1242
        matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
        type is int32. N is the batch size. If match_indices[i][j] is -1, it
Y
yuyang18 已提交
1243 1244 1245 1246 1247
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

W
wangguanzhong 已提交
1248 1249
        matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
        type is float32. N is batch size. If match_indices[i][j] is -1,
Y
yuyang18 已提交
1250 1251 1252 1253 1254 1255 1256
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

1257
        >>> import paddle.fluid as fluid
1258 1259
        >>> x = fluid.data(name='x', shape=[None, 4], dtype='float32')
        >>> y = fluid.data(name='y', shape=[None, 4], dtype='float32')
Y
yuyang18 已提交
1260 1261
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
1262 1263
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
1264 1265 1266
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
1267 1268 1269
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
1270 1271 1272 1273
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
1291

1292 1293 1294 1295 1296
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
1297

1298
    1. Assigning all outputs based on `match_indices`:
C
chengduoZH 已提交
1299

1300 1301 1302
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
1303

1304 1305
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
1306

1307
        Otherwise,
C
chengduoZH 已提交
1308

1309 1310
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
1311

Q
qingqing01 已提交
1312
    2. Assigning outputs based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
1313

Q
qingqing01 已提交
1314 1315
    Assumed that i-th instance in `neg_indices` is called `neg_indice`,
    for i-th instance:
M
minqiyang 已提交
1316

1317
    .. code-block:: text
C
chengduoZH 已提交
1318

Q
qingqing01 已提交
1319 1320 1321
        for id in neg_indice:
            out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][id] = 1.0
1322 1323

    Args:
Q
qingqing01 已提交
1324 1325 1326
       input (Variable): This input is a 3D LoDTensor with shape [M, P, K].
           Data type should be int32 or float32.
       matched_indices (Variable): The input matched indices
1327 1328 1329
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
Q
qingqing01 已提交
1330 1331
       negative_indices (Variable, optional): The input negative example indices
           are an optional input with shape [Neg, 1] and int32 type, where Neg is
1332
           the total number of negative example indices.
Q
qingqing01 已提交
1333 1334 1335 1336 1337
       mismatch_value (float32, optional): Fill this value to the mismatched
           location.
       name (string): The default value is None.  Normally there is no need for
           user to set this property.  For more information, please refer
           to :ref:`api_guide_Name`.
1338 1339

    Returns:
Q
qingqing01 已提交
1340 1341 1342 1343 1344 1345 1346 1347
        tuple: A tuple(out, out_weight) is returned.

        out (Variable): a 3D Tensor with shape [N, P, K] and same data type
        with `input`, N and P is the same as they are in `matched_indices`,
        K is the same as it in input of X.

        out_weight (Variable): the weight for output with the shape of [N, P, 1].
        Data type is float32.
1348 1349 1350 1351 1352

    Examples:

        .. code-block:: python

1353
            import paddle.fluid as fluid
Q
qingqing01 已提交
1354
            x = fluid.data(
1355 1356 1357
                name='x',
                shape=[4, 20, 4],
                dtype='float',
Q
qingqing01 已提交
1358 1359
                lod_level=1)
            matched_id = fluid.data(
1360 1361
                name='indices',
                shape=[8, 20],
Q
qingqing01 已提交
1362
                dtype='int32')
1363 1364 1365 1366
            trg, trg_weight = fluid.layers.target_assign(
                x,
                matched_id,
                mismatch_value=0)
1367 1368
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
1369 1370
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
1398
             normalize=True,
1399 1400
             sample_size=None):
    """
Y
yuyang18 已提交
1401
    **Multi-box loss layer for object detection algorithm of SSD**
1402

翟飞跃 已提交
1403 1404
    This layer is to compute detection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth bounding
1405 1406 1407 1408
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
1409
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
1410

1411
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
1412

1413
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
1414

1415
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
1416

1417
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
1418

1419
      2.2. Compute confidence loss.
Y
yuyang18 已提交
1420

1421 1422
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
1423

1424
    4. Assign classification and regression targets
Y
yuyang18 已提交
1425

1426
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
1427

1428
      4.2. Assign regression targets.
Y
yuyang18 已提交
1429

1430
      4.3. Assign classification targets.
Y
yuyang18 已提交
1431

1432
    5. Compute the overall objective loss.
Y
yuyang18 已提交
1433

1434
      5.1 Compute confidence loss.
Y
yuyang18 已提交
1435

1436
      5.2 Compute localization loss.
Y
yuyang18 已提交
1437

1438 1439 1440 1441 1442 1443
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
1444 1445
            the layout is [xmin, ymin, xmax, ymax].The data type is float32 or
            float64.
1446 1447
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
1448 1449
            `location`, C is the class number.The data type is float32 or
            float64.
翟飞跃 已提交
1450
        gt_box (Variable): The ground-truth bounding boxes (bboxes) are a 2D
1451
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
1452
            bboxes of mini-batch input.The data type is float32 or float64.
1453
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
1454 1455 1456
            with shape [Ng, 1].Ng is the total number of ground-truth bboxes of
            mini-batch input, 1 is the number of class. The data type is float32
            or float64.
1457
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
1458 1459
            Np and 4 are the same as they are in `location`. The data type is
            float32 or float64.
1460
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
1461
            with shape [Np, 4]. Np and 4 are the same as they are in `prior_box`
1462 1463
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
1464 1465
            'overlap_threshold' to determine the extra matching bboxes when finding \
            matched boxes. 0.5 by default.
1466
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
翟飞跃 已提交
1467
            boxes, used only when mining_type is 'max_negative', 3.0 by default.
1468
        neg_overlap (float): The negative overlap upper bound for the unmatched
1469
            predictions. Use only when mining_type is 'max_negative',
1470 1471 1472 1473
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
翟飞跃 已提交
1474
            be 'bipartite' or 'per_prediction', 'per_prediction' by default.
1475 1476
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
1477
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
1478
            of output locations, True by default.
1479 1480
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
1481 1482

    Returns:
1483 1484 1485
        Variable(Tensor):  The weighted sum of the localization loss and confidence loss, \
        with shape [N * Np, 1], N and Np are the same as they are in
        `location`.The data type is float32 or float64.
1486 1487

    Raises:
Y
yuyang18 已提交
1488 1489
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
1490 1491

    Examples:
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

        .. code-block:: python

            import paddle.fluid as fluid
            pb = fluid.data(
                           name='prior_box',
                           shape=[10, 4],
                           dtype='float32')
            pbv = fluid.data(
                           name='prior_box_var',
                           shape=[10, 4],
                           dtype='float32')
            loc = fluid.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = fluid.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = fluid.data(
                 name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = fluid.data(
                 name='gt_label', shape=[1], lod_level=1, dtype='float32')
            loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1511 1512 1513 1514 1515 1516 1517
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1518
    conf_shape = nn.shape(confidence)
1519 1520

    def __reshape_to_2d(var):
1521
        return nn.flatten(x=var, axis=2)
1522 1523 1524 1525 1526

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1527 1528
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1529 1530 1531

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1532 1533
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1534
    gt_label.stop_gradient = True
1535 1536 1537 1538 1539 1540 1541
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1542
    target_label.stop_gradient = True
1543 1544
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1545
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1546
    actual_shape.stop_gradient = True
1547 1548
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
1549
    conf_loss = nn.reshape(
1550
        x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
1551
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1552
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1553
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1554 1555
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1570
            'neg_dist_threshold': neg_overlap,
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1596

1597 1598 1599 1600
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1601 1602 1603 1604
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1605 1606 1607 1608 1609 1610 1611 1612
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1613 1614 1615 1616
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1617 1618
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1619
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1620 1621 1622
    # shape=(-1, 0) is set for compile-time, the correct shape is set by
    # actual_shape in runtime.
    loss = nn.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
1623 1624 1625 1626 1627
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1628
    return loss
C
chengduoZH 已提交
1629 1630


1631 1632 1633 1634
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1635
              aspect_ratios=[1.],
1636 1637 1638 1639 1640
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1641 1642
              name=None,
              min_max_aspect_ratios_order=False):
1643
    """
R
ruri 已提交
1644
    This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
1645 1646 1647 1648 1649
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

R
ruri 已提交
1650 1651 1652 1653 1654 1655
    Parameters:
       input(Variable): 4-D tenosr(NCHW), the data type should be float32 or float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp,
            the data type should be float32 or float64.
       min_sizes(list|tuple|float): the min sizes of generated prior boxes.
       max_sizes(list|tuple|None): the max sizes of generated prior boxes.
1656
            Default: None.
R
ruri 已提交
1657
       aspect_ratios(list|tuple|float): the aspect ratios of generated
1658
            prior boxes. Default: [1.].
1659 1660 1661 1662
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
翟飞跃 已提交
1663
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1664 1665
            step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across
            height or weight of the input will be automatically calculated.
1666
            Default: [0., 0.]
1667
       offset(float): Prior boxes center offset. Default: 0.5
1668
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1669
            in order of [min, max, aspect_ratios], which is consistent with
1670 1671 1672
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
R
ruri 已提交
1673
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1674 1675

    Returns:
R
ruri 已提交
1676
        Tuple: A tuple with two Variable (boxes, variances)
Q
update  
qiaolongfei 已提交
1677

R
ruri 已提交
1678 1679
        boxes(Variable): the output prior boxes of PriorBox.
	4-D tensor, the layout is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1680
        H is the height of input, W is the width of input,
R
ruri 已提交
1681
        num_priors is the total box count of each position of input.
Q
update  
qiaolongfei 已提交
1682

R
ruri 已提交
1683 1684
        variances(Variable): the expanded variances of PriorBox.
    	4-D tensor, the layput is [H, W, num_priors, 4].
Q
update  
qiaolongfei 已提交
1685
        H is the height of input, W is the width of input
R
ruri 已提交
1686
        num_priors is the total box count of each position of input
1687 1688 1689

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1690

R
ruri 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.prior_box(
                 input=input,
                 image=image,
		 min_sizes=[100.],
                 clip=True,
                 flip=True)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(fluid.default_main_program(),
                feed={"input":input_data,"image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    # print(box_out.shape)
	    # (6, 9, 1, 4)
	    # print(var_out.shape)
	    # (6, 9, 1, 4)

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.prior_box(
		    input=input,
		    image=image,
		    min_sizes=[100.],
		    clip=True,
		    flip=True)
		# print(box.shape)
		# [6L, 9L, 1L, 4L]
                # print(var.shape)
		# [6L, 9L, 1L, 4L]

1738 1739 1740 1741
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1757 1758 1759 1760 1761 1762 1763 1764
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1765 1766
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1767 1768
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1769 1770
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1771 1772
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1773 1774
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1796
                      flatten_to_2d=False,
R
ruri 已提交
1797 1798 1799
                      name=None):
    """

R
ruri 已提交
1800
    This op generates density prior boxes for SSD(Single Shot MultiBox Detector) 
R
ruri 已提交
1801 1802 1803 1804 1805 1806
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
R
ruri 已提交
1807
    
R
ruri 已提交
1808
    For densities_i in densities:
R
ruri 已提交
1809 1810
    
    .. math::
R
ruri 已提交
1811

R
ruri 已提交
1812 1813 1814 1815 1816 1817 1818
        N\_density_prior\_box = SUM(N\_fixed\_ratios * densities\_i^2)

    N_density_prior_box is the number of density_prior_box and N_fixed_ratios is the number of fixed_ratios.

    Parameters:
       input(Variable): 4-D tensor(NCHW), the data type should be float32 of float64.
       image(Variable): 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
R
ruri 已提交
1819
            the layout is NCHW.
R
ruri 已提交
1820
       densities(list|tuple|None): The densities of generated density prior 
R
ruri 已提交
1821 1822
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
R
ruri 已提交
1823
       fixed_sizes(list|tuple|None): The fixed sizes of generated density
R
ruri 已提交
1824 1825
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
R
ruri 已提交
1826
       fixed_ratios(list|tuple|None): The fixed ratios of generated density
R
ruri 已提交
1827 1828 1829
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
R
ruri 已提交
1830
       variance(list|tuple): The variances to be encoded in density prior boxes.
R
ruri 已提交
1831
            Default:[0.1, 0.1, 0.2, 0.2].
R
ruri 已提交
1832
       clip(bool): Whether to clip out of boundary boxes. Default: False.
翟飞跃 已提交
1833
       step(list|tuple): Prior boxes step across width and height, If
R
ruri 已提交
1834 1835
            step[0] equals 0.0 or step[1] equals 0.0, the density prior boxes step across
            height or weight of the input will be automatically calculated.
R
ruri 已提交
1836 1837
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1838 1839
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1840 1841
       name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
R
ruri 已提交
1842
    Returns:
R
ruri 已提交
1843
        Tuple: A tuple with two Variable (boxes, variances)
R
ruri 已提交
1844 1845

        boxes: the output density prior boxes of PriorBox.
R
ruri 已提交
1846 1847 1848
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1849 1850

        variances: the expanded variances of PriorBox.
R
ruri 已提交
1851 1852 1853
        4-D tensor, the layout is [H, W, num_priors, 4] when flatten_to_2d is False.
        2-D tensor, the layout is [H * W * num_priors, 4] when flatten_to_2d is True.
        H is the height of input, W is the width of input, and num_priors is the total box count of each position of input.
R
ruri 已提交
1854 1855 1856


    Examples:
R
ruri 已提交
1857

R
ruri 已提交
1858 1859
        .. code-block:: python

R
ruri 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
            #declarative mode

	    import paddle.fluid as fluid
	    import numpy as np

	    input = fluid.data(name="input", shape=[None,3,6,9])
	    image = fluid.data(name="image", shape=[None,3,9,12])
	    box, var = fluid.layers.density_prior_box(
                 input=input,
                 image=image,
                 densities=[4, 2, 1],
                 fixed_sizes=[32.0, 64.0, 128.0],
                 fixed_ratios=[1.],
                 clip=True,
                 flatten_to_2d=True)

            place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    # prepare a batch of data
	    input_data = np.random.rand(1,3,6,9).astype("float32")
	    image_data = np.random.rand(1,3,9,12).astype("float32")
 
	    box_out, var_out = exe.run(
	        fluid.default_main_program(),
                feed={"input":input_data,
	              "image":image_data},
                fetch_list=[box,var],
                return_numpy=True)
 
	    print(mask_out.shape)
	    # (1134, 4)
            print(z_out.shape)
	    # (1134, 4)


	    #imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		image = dg.to_variable(image_data)
    		box, var = fluid.layers.density_prior_box(
		    input=input,
		    image=image,
		    densities=[4, 2, 1],
		    fixed_sizes=[32.0, 64.0, 128.0],
		    fixed_ratios=[1.],
		    clip=True)

    		print(box.shape)
		# [6L, 9L, 21L, 4L]
		print(var.shape)
		# [6L, 9L, 21L, 4L]

R
ruri 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1946 1947 1948 1949
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1965
def multi_box_head(inputs,
C
chengduoZH 已提交
1966 1967
                   image,
                   base_size,
C
chengduoZH 已提交
1968
                   num_classes,
C
chengduoZH 已提交
1969
                   aspect_ratios,
1970 1971
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1972 1973
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1974 1975 1976 1977
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1978 1979
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1980
                   clip=False,
C
chengduoZH 已提交
1981
                   kernel_size=1,
C
chengduoZH 已提交
1982
                   pad=0,
C
chengduoZH 已提交
1983
                   stride=1,
1984 1985
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1986
    """
Q
qingqing01 已提交
1987 1988 1989 1990
    Base on SSD ((Single Shot MultiBox Detector) algorithm, generate prior boxes,
    regression location and classification confidence on multiple input feature
    maps, then output the concatenate results. The details of this algorithm,
    please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1991
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1992 1993

    Args:
Q
qingqing01 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
       inputs (list(Variable)|tuple(Variable)): The list of input variables,
           the format of all Variables are 4-D Tensor, layout is NCHW.
           Data type should be float32 or float64.
       image (Variable): The input image, layout is NCHW. Data type should be
           the same as inputs.
       base_size(int): the base_size is input image size. When len(inputs) > 2
           and `min_size` and `max_size` are None, the `min_size` and `max_size`
           are calculated by `baze_size`, 'min_ratio' and `max_ratio`. The
           formula is as follows:

              ..  code-block:: text

                  min_sizes = []
                  max_sizes = []
                  step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
                  for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
                      min_sizes.append(base_size * ratio / 100.)
                      max_sizes.append(base_size * (ratio + step) / 100.)
                      min_sizes = [base_size * .10] + min_sizes
                      max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2015
       num_classes(int): The number of classes.
Q
qingqing01 已提交
2016 2017
       aspect_ratios(list(float) | tuple(float)): the aspect ratios of generated
           prior boxes. The length of input and aspect_ratios must be equal.
C
chengduoZH 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
2037
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
2038 2039 2040 2041 2042
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
Q
qingqing01 已提交
2043 2044 2045
       name(str): The default value is None.  Normally there is no need
           for user to set this property.  For more information, please
           refer to :ref:`api_guide_Name`.
2046
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
2047
            in order of [min, max, aspect_ratios], which is consistent with
2048 2049 2050
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
2051 2052

    Returns:
Q
update  
qiaolongfei 已提交
2053 2054
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

Q
qingqing01 已提交
2055 2056 2057
        mbox_loc (Variable): The predicted boxes' location of the inputs. The
        layout is [N, num_priors, 4], where N is batch size, ``num_priors``
        is the number of prior boxes. Data type is the same as input.
Q
update  
qiaolongfei 已提交
2058

Q
qingqing01 已提交
2059 2060 2061 2062
        mbox_conf (Variable): The predicted boxes' confidence of the inputs.
        The layout is [N, num_priors, C], where ``N`` and ``num_priors`` 
        has the same meaning as above. C is the number of Classes.
        Data type is the same as input.
Q
update  
qiaolongfei 已提交
2063

Q
qingqing01 已提交
2064 2065 2066
        boxes (Variable): the output prior boxes. The layout is [num_priors, 4].
        The meaning of num_priors is the same as above.
        Data type is the same as input.
C
chengduoZH 已提交
2067

Q
qingqing01 已提交
2068 2069
        variances (Variable): the expanded variances for prior boxes.
        The layout is [num_priors, 4]. Data type is the same as input.
C
chengduoZH 已提交
2070

Q
qingqing01 已提交
2071
    Examples 1: set min_ratio and max_ratio:
C
chengduoZH 已提交
2072
        .. code-block:: python
Q
update  
qiaolongfei 已提交
2073

2074 2075
          import paddle.fluid as fluid

Q
qingqing01 已提交
2076 2077 2078 2079 2080 2081 2082
          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')
2083

Q
update  
qiaolongfei 已提交
2084
          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
2085
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
C
chengduoZH 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
Q
qingqing01 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    Examples 2: set min_sizes and max_sizes:
        .. code-block:: python

          import paddle.fluid as fluid

          images = fluid.data(name='data', shape=[None, 3, 300, 300], dtype='float32')
          conv1 = fluid.data(name='conv1', shape=[None, 512, 19, 19], dtype='float32')
          conv2 = fluid.data(name='conv2', shape=[None, 1024, 10, 10], dtype='float32')
          conv3 = fluid.data(name='conv3', shape=[None, 512, 5, 5], dtype='float32')
          conv4 = fluid.data(name='conv4', shape=[None, 256, 3, 3], dtype='float32')
          conv5 = fluid.data(name='conv5', shape=[None, 256, 2, 2], dtype='float32')
          conv6 = fluid.data(name='conv6', shape=[None, 128, 1, 1], dtype='float32')

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
            inputs=[conv1, conv2, conv3, conv4, conv5, conv6],
            image=images,
            num_classes=21,
            min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
            max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0],
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)

C
chengduoZH 已提交
2121 2122
    """

C
chengduoZH 已提交
2123
    def _reshape_with_axis_(input, axis=1):
2124
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
2125
        return out
2126

2127 2128
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
2129

C
chengduoZH 已提交
2130 2131 2132 2133
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

2134 2135
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
2136

C
chengduoZH 已提交
2137 2138 2139 2140 2141
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
2142
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
2143 2144 2145
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
2146
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
2147 2148 2149 2150 2151
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
2175 2176
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
2177 2178
    box_results = []
    var_results = []
C
chengduoZH 已提交
2179 2180
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
2181 2182
        max_size = max_sizes[i]

2183
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
2184
            min_size = [min_size]
C
chengduoZH 已提交
2185 2186
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
2187 2188 2189 2190

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
2191
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
2192
                aspect_ratio = [aspect_ratio]
2193
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
2194

2195
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
2196 2197
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
2198 2199 2200 2201 2202

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
2203

2204
        # get loc
Y
Yuan Gao 已提交
2205
        num_loc_output = num_boxes * 4
2206
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
2207
            input=input,
2208 2209 2210 2211 2212
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

2213
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
2214
        mbox_loc_flatten = nn.flatten(mbox_loc, axis=1)
Y
Yuan Gao 已提交
2215
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
2216

2217
        # get conf
C
chengduoZH 已提交
2218
        num_conf_output = num_boxes * num_classes
2219
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
2220
            input=input,
2221 2222 2223 2224
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
2225
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
2226
        conf_loc_flatten = nn.flatten(conf_loc, axis=1)
Y
Yuan Gao 已提交
2227
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
2228

C
chengduoZH 已提交
2229 2230 2231
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
2232 2233
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
2243
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
2244
        mbox_locs_concat = nn.reshape(mbox_locs_concat, shape=[0, -1, 4])
Y
Yuan Gao 已提交
2245
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
2246 2247
        mbox_confs_concat = nn.reshape(
            mbox_confs_concat, shape=[0, -1, num_classes])
C
chengduoZH 已提交
2248

2249 2250
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
2251
    return mbox_locs_concat, mbox_confs_concat, box, var
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
W
wangguanzhong 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
       input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
       anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
          anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
          For instance, the anchor size of 64 means the area of this anchor 
          equals to 64**2. None by default.
       aspect_ratios(float32|list|tuple, optional): The height / width ratios 
           of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
       variance(list|tuple, optional): The variances to be used in box 
           regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by 
           default.
       stride(list|tuple, optional): The anchors stride across width and height.
           The data type is float32. e.g. [16.0, 16.0]. None by default.
       offset(float32, optional): Prior boxes center offset. 0.5 by default.
       name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and None 
           by default. 
2286 2287

    Returns:
W
wangguanzhong 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
        Tuple:

        Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
        H is the height of input, W is the width of input,
        num_anchors is the box count of each position. 
        Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
 
        Variances(Variable): The expanded variances of anchors
        with a layout of [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_anchors is the box count of each position.
        Each variance is in (xcenter, ycenter, w, h) format.
2300 2301 2302 2303 2304 2305


    Examples:

        .. code-block:: python

2306
            import paddle.fluid as fluid
2307
            conv1 = fluid.data(name='conv1', shape=[None, 48, 16, 16], dtype='float32')
J
jerrywgz 已提交
2308
            anchor, var = fluid.layers.anchor_generator(
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
2342 2343
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
2344 2345 2346 2347 2348 2349 2350 2351 2352
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
2353 2354


W
whs 已提交
2355 2356 2357 2358
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
S
SunGaofeng 已提交
2359 2360
                              spatial_scale=1.0,
                              name=None):
W
whs 已提交
2361
    """
S
SunGaofeng 已提交
2362
    **The** `rois` **of this op should be a LoDTensor.**
W
whs 已提交
2363

S
SunGaofeng 已提交
2364 2365 2366 2367 2368
    ROI perspective transform op applies perspective transform to map each roi into an 
    rectangular region. Perspective transform is a type of transformation in linear algebra.

    Parameters:
        input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of 
W
whs 已提交
2369 2370
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
S
SunGaofeng 已提交
2371 2372 2373
                          and W is the width of the feature. The data type is float32.
        rois (Variable):  2-D LoDTensor, ROIs (Regions of Interest) to be transformed. 
                          It should be a 2-D LoDTensor of shape (num_rois, 8). Given as 
W
whs 已提交
2374 2375 2376
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
S
SunGaofeng 已提交
2377 2378 2379 2380
                          and (x4, y4) is the bottom left coordinates. The data type is the
                          same as `input` 
        transformed_height (int): The height of transformed output.
        transformed_width (int): The width of transformed output.
W
whs 已提交
2381
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
S
SunGaofeng 已提交
2382 2383 2384
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
2385 2386

    Returns:
S
SunGaofeng 已提交
2387
            A tuple with three Variables. (out, mask, transform_matrix)
2388 2389

            out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2390
            (num_rois, channels, transformed_h, transformed_w). The data type is the same as `input`
2391 2392

            mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
S
SunGaofeng 已提交
2393
            (num_rois, 1, transformed_h, transformed_w). The data type is int32
2394 2395

            transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
S
SunGaofeng 已提交
2396 2397 2398 2399
            a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`

    Return Type:
        tuple
W
whs 已提交
2400 2401 2402 2403

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
2404
            import paddle.fluid as fluid
2405

S
SunGaofeng 已提交
2406 2407
            x = fluid.data(name='x', shape=[100, 256, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 8], lod_level=1, dtype='float32')
2408
            out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
W
whs 已提交
2409 2410 2411
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2412
    out = helper.create_variable_for_type_inference(dtype)
2413 2414
    mask = helper.create_variable_for_type_inference(dtype="int32")
    transform_matrix = helper.create_variable_for_type_inference(dtype)
2415 2416
    out2in_idx = helper.create_variable_for_type_inference(dtype="int32")
    out2in_w = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
2417 2418 2419 2420
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
2421 2422 2423
        outputs={
            "Out": out,
            "Out2InIdx": out2in_idx,
2424 2425 2426
            "Out2InWeights": out2in_w,
            "Mask": mask,
            "TransformMatrix": transform_matrix
2427
        },
W
whs 已提交
2428 2429 2430 2431 2432
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
2433
    return out, mask, transform_matrix
W
whs 已提交
2434 2435


2436 2437
def generate_proposal_labels(rpn_rois,
                             gt_classes,
2438
                             is_crowd,
2439
                             gt_boxes,
2440
                             im_info,
2441 2442 2443 2444 2445 2446
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
2447
                             class_nums=None,
2448 2449 2450
                             use_random=True,
                             is_cls_agnostic=False,
                             is_cascade_rcnn=False):
2451
    """
2452
    **Generate Proposal Labels of Faster-RCNN**
2453

B
buxingyuan 已提交
2454
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
2455
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
2456 2457 2458

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
2459
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
2460 2461
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
2462
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
2463
    then we apply random sampling to make sure
B
buxingyuan 已提交
2464
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
2465 2466 2467 2468 2469

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
2470 2471 2472
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. The data type can be float32 or float64.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. The data type must be int32.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. The data type must be int32.
B
buxingyuan 已提交
2473 2474 2475
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

2476 2477 2478 2479 2480 2481 2482
        batch_size_per_im(int): Batch size of rois per images. The data type must be int32.
        fg_fraction(float): Foreground fraction in total batch_size_per_im. The data type must be float32.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample. The data type must be float32.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. The data type must be float32.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. The data type must be float32.
        bbox_reg_weights(list|tuple): Box regression weights. The data type must be float32.
        class_nums(int): Class number. The data type must be int32.
B
buxingyuan 已提交
2483
        use_random(bool): Use random sampling to choose foreground and background boxes.
2484 2485
        is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
        is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
B
Bai Yifan 已提交
2486

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
    Returns:
        tuple:
        A tuple with format``(rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights)``.

        - **rois**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4]``. The data type is the same as ``rpn_rois``.
        - **labels_int32**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 1]``. The data type must be int32.
        - **bbox_targets**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The regression targets of all RoIs. The data type is the same as ``rpn_rois``.
        - **bbox_inside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of foreground boxes' regression loss. The data type is the same as ``rpn_rois``.
        - **bbox_outside_weights**: 2-D LoDTensor with shape ``[batch_size_per_im * batch_size, 4 * class_num]``. The weights of regression loss. The data type is the same as ``rpn_rois``.


B
Bai Yifan 已提交
2498 2499 2500 2501
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2502 2503 2504 2505 2506
            rpn_rois = fluid.data(name='rpn_rois', shape=[None, 4], dtype='float32')
            gt_classes = fluid.data(name='gt_classes', shape=[None, 1], dtype='float32')
            is_crowd = fluid.data(name='is_crowd', shape=[None, 1], dtype='float32')
            gt_boxes = fluid.data(name='gt_boxes', shape=[None, 4], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
2507
            rois, labels, bbox, inside_weights, outside_weights = fluid.layers.generate_proposal_labels(
B
Bai Yifan 已提交
2508 2509 2510
                           rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
                           class_nums=10)

2511 2512 2513 2514
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
2524 2525 2526 2527 2528 2529

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
2530
            'IsCrowd': is_crowd,
2531
            'GtBoxes': gt_boxes,
2532
            'ImInfo': im_info
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
2548
            'class_nums': class_nums,
2549 2550 2551
            'use_random': use_random,
            'is_cls_agnostic': is_cls_agnostic,
            'is_cascade_rcnn': is_cascade_rcnn
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


2563 2564 2565
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
Q
qingqing01 已提交
2566
    **Generate Mask Labels for Mask-RCNN**
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
Q
qingqing01 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
        im_info (Variable): A 2-D Tensor with shape [N, 3] and float32
            data type. N is the batch size, each element is
            [height, width, scale] of image. Image scale is
            target_size / original_size, target_size is the size after resize,
            original_size is the original image size.
        gt_classes (Variable): A 2-D LoDTensor with shape [M, 1]. Data type
            shoule be int. M is the total number of ground-truth, each
            element is a class label.
        is_crowd (Variable): A 2-D LoDTensor with same shape and same data type
            as gt_classes, each element is a flag indicating whether a
            groundtruth is crowd.
        gt_segms (Variable): This input is a 2D LoDTensor with shape [S, 2] and
            float32 data type, it's LoD level is 3.
            Usually users do not needs to understand LoD,
2616
            The users should return correct data format in reader.
Q
qingqing01 已提交
2617
            The LoD[0] represents the ground-truth objects number of
2618 2619 2620 2621
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
Q
qingqing01 已提交
2622 2623 2624 2625
        rois (Variable): A 2-D LoDTensor with shape [R, 4] and float32 data type
            float32. R is the total number of RoIs, each element is a bounding
            box with (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32 (Variable): A 2-D LoDTensor in shape of [R, 1] with type
2626 2627
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
Q
qingqing01 已提交
2628 2629
        num_classes (int): Class number.
        resolution (int): Resolution of mask predictions.
2630 2631

    Returns:
Q
qingqing01 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4] and same data
        type as `rois`. P is the total number of sampled RoIs. Each element
        is a bounding box with [xmin, ymin, xmax, ymax] format in range of
        orignal image size.

        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1]
        and int data type, each element repersents the output mask RoI
        index with regard to input RoIs.

        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M] and int
        data type, K is the classes number and M is the resolution of mask
        predictions. Each element repersents the binary mask targets.
2644 2645 2646 2647

    Examples:
        .. code-block:: python

2648 2649
          import paddle.fluid as fluid

Q
qingqing01 已提交
2650
          im_info = fluid.data(name="im_info", shape=[None, 3],
2651
              dtype="float32")
Q
qingqing01 已提交
2652
          gt_classes = fluid.data(name="gt_classes", shape=[None, 1],
2653
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2654
          is_crowd = fluid.data(name="is_crowd", shape=[None, 1],
2655
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2656
          gt_masks = fluid.data(name="gt_masks", shape=[None, 2],
2657
              dtype="float32", lod_level=3)
2658
          # rois, roi_labels can be the output of
2659
          # fluid.layers.generate_proposal_labels.
Q
qingqing01 已提交
2660
          rois = fluid.data(name="rois", shape=[None, 4],
2661
              dtype="float32", lod_level=1)
Q
qingqing01 已提交
2662
          roi_labels = fluid.data(name="roi_labels", shape=[None, 1],
2663
              dtype="int32", lod_level=1)
2664 2665 2666 2667 2668 2669
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
2670
              labels_int32=roi_labels,
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2720 2721
    **Generate proposal Faster-RCNN**

2722 2723 2724 2725
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2726 2727 2728 2729
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2730 2731
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2732 2733 2734 2735 2736 2737
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2738 2739 2740
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
2741
            width of the feature map. The data type must be float32.
2742 2743
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
2744
            anchor location. The data type must be float32.
2745 2746
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2747
            between origin image size and the size of feature map.
2748
            The data type must be int32.
2749 2750 2751
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
2752 2753
            in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32.
        variances(Variable): A 4-D Tensor. The expanded variances of anchors with a layout of
2754
            [H, W, num_priors, 4]. Each variance is in
2755
            (xcenter, ycenter, w, h) format. The data type must be float32.
2756
        pre_nms_top_n(float): Number of total bboxes to be kept per
2757
            image before NMS. The data type must be float32. `6000` by default.
2758
        post_nms_top_n(float): Number of total bboxes to be kept per
2759 2760
            image after NMS. The data type must be float32. `1000` by default.
        nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default.
2761
        min_size(float): Remove predicted boxes with either height or
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
            width < min_size. The data type must be float32. `0.1` by default.
        eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`,
            `adaptive_threshold = adaptive_threshold * eta` in each iteration.

    Returns:
        tuple:
        A tuple with format ``(rpn_rois, rpn_roi_probs)``.

        - **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
        - **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``.
B
Bai Yifan 已提交
2772 2773 2774 2775 2776

    Examples:
        .. code-block:: python
        
            import paddle.fluid as fluid
2777 2778 2779 2780 2781
            scores = fluid.data(name='scores', shape=[None, 4, 5, 5], dtype='float32')
            bbox_deltas = fluid.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32')
            im_info = fluid.data(name='im_info', shape=[None, 3], dtype='float32')
            anchors = fluid.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32')
            variances = fluid.data(name='variances', shape=[None, 5, 10, 4], dtype='float32')
B
Bai Yifan 已提交
2782 2783 2784
            rois, roi_probs = fluid.layers.generate_proposals(scores, bbox_deltas,
                         im_info, anchors, variances)

2785 2786 2787
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2788 2789 2790 2791
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2814 2815


J
jerrywgz 已提交
2816
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2817 2818
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2819
    For each input box, The formula is given as follows:
2820 2821 2822
        
    .. code-block:: text

J
jerrywgz 已提交
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2834 2835

    Args:
W
wangguanzhong 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844
        input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
            the last dimension is 4 and data type is float32 or float64.
        im_info(Variable): The 2-D Tensor with shape [N, 3] with layout 
            (height, width, scale) represeting the information of image. 
            height and width is the input size and scale is the ratio of input
            size and original size. The data type is float32 or float64.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
2845 2846
    
    Returns:
W
wangguanzhong 已提交
2847 2848 2849 2850 2851
        Variable:

        output(Variable): The cliped tensor with data type float32 or float64. 
        The shape is same as input.

2852
        
J
jerrywgz 已提交
2853 2854
    Examples:
        .. code-block:: python
2855
        
2856
            import paddle.fluid as fluid
2857 2858 2859
            boxes = fluid.data(
                name='boxes', shape=[None, 8, 4], dtype='float32', lod_level=1)
            im_info = fluid.data(name='im_info', shape=[-1 ,3])
J
jerrywgz 已提交
2860
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2861
                input=boxes, im_info=im_info)
J
jerrywgz 已提交
2862 2863 2864
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2865
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2866
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2867
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2868

2869 2870
    return output

J
jerrywgz 已提交
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
def retinanet_detection_output(bboxes,
                               scores,
                               anchors,
                               im_info,
                               score_threshold=0.05,
                               nms_top_k=1000,
                               keep_top_k=100,
                               nms_threshold=0.3,
                               nms_eta=1.):
    """
2882
    **Detection Output Layer for the detector RetinaNet.**
2883

2884 2885 2886 2887
    In the detector `RetinaNet <https://arxiv.org/abs/1708.02002>`_ , many 
    `FPN <https://arxiv.org/abs/1612.03144>`_ levels output the category
    and location predictions, this OP is to get the detection results by
    performing following steps:
2888

2889 2890 2891
    1. For each FPN level, decode box predictions according to the anchor
       boxes from at most :attr:`nms_top_k` top-scoring predictions after
       thresholding detector confidence at :attr:`score_threshold`.
2892 2893 2894 2895
    2. Merge top predictions from all levels and apply multi-class non 
       maximum suppression (NMS) on them to get the final detections.

    Args:
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        bboxes(List): A list of Tensors from multiple FPN levels represents
            the location prediction for all anchor boxes. Each element is
            a 3-D Tensor with shape :math:`[N, Mi, 4]`, :math:`N` is the
            batch size, :math:`Mi` is the number of bounding boxes from
            :math:`i`-th FPN level and each bounding box has four coordinate
            values and the layout is [xmin, ymin, xmax, ymax]. The data type
            of each element is float32 or float64.
        scores(List): A list of Tensors from multiple FPN levels represents
            the category prediction for all anchor boxes. Each element is a
            3-D Tensor with shape :math:`[N, Mi, C]`,  :math:`N` is the batch
            size, :math:`C` is the class number (**excluding background**),
            :math:`Mi` is the number of bounding boxes from :math:`i`-th FPN
            level. The data type of each element is float32 or float64.
        anchors(List): A list of Tensors from multiple FPN levels represents
            the locations of all anchor boxes. Each element is a 2-D Tensor
            with shape :math:`[Mi, 4]`, :math:`Mi` is the number of bounding
            boxes from :math:`i`-th FPN level, and each bounding box has four
2913
            coordinate values and the layout is [xmin, ymin, xmax, ymax].
2914 2915 2916 2917 2918 2919
            The data type of each element is float32 or float64.
        im_info(Variable): A 2-D Tensor with shape :math:`[N, 3]` represents the size
            information of input images. :math:`N` is the batch size, the size
            informarion of each image is a 3-vector which are the height and width
            of the network input along with the factor scaling the origin image to
            the network input. The data type of :attr:`im_info` is float32.
2920
        score_threshold(float): Threshold to filter out bounding boxes
2921
            with a confidence score before NMS, default value is set to 0.05.
2922
        nms_top_k(int): Maximum number of detections per FPN layer to be
2923 2924
            kept according to the confidences before NMS, default value is set to
            1000.
2925
        keep_top_k(int): Number of total bounding boxes to be kept per image after
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
            NMS step. Default value is set to 100, -1 means keeping all bounding
            boxes after NMS step.
        nms_threshold(float): The Intersection-over-Union(IoU) threshold used to 
            filter out boxes in NMS.
        nms_eta(float): The parameter for adjusting :attr:`nms_threshold` in NMS.
            Default value is set to 1., which represents the value of
            :attr:`nms_threshold` keep the same in NMS. If :attr:`nms_eta` is set
            to be lower than 1. and the value of :attr:`nms_threshold` is set to
            be higher than 0.5, everytime a bounding box is filtered out,
            the adjustment for :attr:`nms_threshold` like :attr:`nms_threshold`
            = :attr:`nms_threshold` * :attr:`nms_eta`  will not be stopped until
            the actual value of :attr:`nms_threshold` is lower than or equal to
            0.5.

    **Notice**: In some cases where the image sizes are very small, it's possible
    that there is no detection if :attr:`score_threshold` are used at all
    levels. Hence, this OP do not filter out anchors from the highest FPN level
    before NMS. And the last element in :attr:`bboxes`:, :attr:`scores` and
    :attr:`anchors` is required to be from the hightest FPN level.
2945 2946

    Returns:
2947 2948
        Variable(The data type is float32 or float64):
            The detection output is a 1-level LoDTensor with shape :math:`[No, 6]`.
2949
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
2950 2951 2952
            :math:`No` is the total number of detections in this mini-batch.
            The :math:`i`-th image has `LoD[i + 1] - LoD[i]` detected
            results, if `LoD[i + 1] - LoD[i]` is 0, the :math:`i`-th image
2953 2954 2955 2956 2957 2958
            has no detected results. If all images have no detected results,
            LoD will be set to 0, and the output tensor is empty (None).

    Examples:
        .. code-block:: python

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
           import paddle.fluid as fluid

           bboxes_low = fluid.data(
               name='bboxes_low', shape=[1, 44, 4], dtype='float32')
           bboxes_high = fluid.data(
               name='bboxes_high', shape=[1, 11, 4], dtype='float32')
           scores_low = fluid.data(
               name='scores_low', shape=[1, 44, 10], dtype='float32')
           scores_high = fluid.data(
               name='scores_high', shape=[1, 11, 10], dtype='float32')
           anchors_low = fluid.data(
               name='anchors_low', shape=[44, 4], dtype='float32')
           anchors_high = fluid.data(
               name='anchors_high', shape=[11, 4], dtype='float32')
           im_info = fluid.data(
               name="im_info", shape=[1, 3], dtype='float32')
           nmsed_outs = fluid.layers.retinanet_detection_output(
                                          bboxes=[bboxes_low, bboxes_high],
                                          scores=[scores_low, scores_high],
                                          anchors=[anchors_low, anchors_high],
                                          im_info=im_info,
                                          score_threshold=0.05,
                                          nms_top_k=1000,
                                          keep_top_k=100,
                                          nms_threshold=0.45,
                                          nms_eta=1.)
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
    """

    helper = LayerHelper('retinanet_detection_output', **locals())
    output = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('scores'))
    helper.append_op(
        type="retinanet_detection_output",
        inputs={
            'BBoxes': bboxes,
            'Scores': scores,
            'Anchors': anchors,
            'ImInfo': im_info
        },
        attrs={
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': 1.,
        },
        outputs={'Out': output})
    output.stop_gradient = True
    return output


J
jerrywgz 已提交
3010 3011 3012 3013 3014
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
3015
                   nms_threshold=0.3,
J
jerrywgz 已提交
3016 3017
                   normalized=True,
                   nms_eta=1.,
3018 3019
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
3020
    """
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
    See below for an example:

    .. code-block:: text

        if:
            box1.data = (2.0, 3.0, 7.0, 5.0) format is (xmin, ymin, xmax, ymax)
            box1.scores = (0.7, 0.2, 0.4)  which is (label0.score=0.7, label1.score=0.2, label2.cores=0.4)

            box2.data = (3.0, 4.0, 8.0, 5.0)
            box2.score = (0.3, 0.3, 0.1)

            nms_threshold = 0.3
            background_label = 0
            score_threshold = 0
3049

3050 3051 3052 3053 3054 3055 3056

        Then:
            iou = 4/11 > 0.3
            out.data = [[1, 0.3, 3.0, 4.0, 8.0, 5.0],    
                         [2, 0.4, 2.0, 3.0, 7.0, 5.0]]
                         
            Out format is (label, confidence, xmin, ymin, xmax, ymax)
3057 3058 3059 3060 3061 3062 3063 3064
    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
X
xiaoting 已提交
3065
                           The data type is float32 or float64.
3066 3067
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
X
xiaoting 已提交
3068
                           class number. The data type is float32 or float64.   
3069 3070 3071 3072 3073 3074 3075
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
X
xiaoting 已提交
3076
                           of BBoxes.The data type is float32 or float64. 
3077 3078 3079
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
X
xiaoting 已提交
3080
                           case with shape [M, C, 4].The data type is float32 or float64. 
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
X
xiaoting 已提交
3098
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
3099 3100 3101 3102 3103
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
3104 3105 3106 3107
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
3108

3109

3110 3111 3112
    Examples:
        .. code-block:: python

3113

3114
            import paddle.fluid as fluid
X
xiaoting 已提交
3115
            boxes = fluid.data(name='bboxes', shape=[None,81, 4],
3116
                                      dtype='float32', lod_level=1)
X
xiaoting 已提交
3117
            scores = fluid.data(name='scores', shape=[None,81],
3118 3119 3120 3121 3122 3123 3124 3125 3126
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
3147 3148

    return output
3149 3150


3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
def locality_aware_nms(bboxes,
                       scores,
                       score_threshold,
                       nms_top_k,
                       keep_top_k,
                       nms_threshold=0.3,
                       normalized=True,
                       nms_eta=1.,
                       background_label=-1,
                       name=None):
    """
    **Local Aware NMS**
    
    `Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
    suppression (LANMS) on boxes and scores.

    Firstly, this operator merge box and score according their IOU
    (intersection over union). In the NMS step, this operator greedily selects a
    subset of detection bounding boxes that have high scores larger than score_threshold,
    if providing this threshold, then selects the largest nms_top_k confidences scores
    if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
    IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
    of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
                           represents the predicted locations of M bounding
                           bboxes, N is the batch size. Each bounding box
                           has four coordinate values and the layout is
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           The data type is float32 or float64.
        scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
                           predicted confidence predictions. N is the batch
                           size, C is the class number, M is number of bounding
                           boxes. Now only support 1 class. For each category
                           there are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension of
                           BBoxes. The data type is float32 or float64.
        background_label (int): The index of background label, the background
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: -1
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided,
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
                          Default: None.

    Returns:
        Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values:
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
             total number of detections. If there is no detected boxes for all
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}). The data type is float32 or float64.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
                                      dtype='float32')
            scores = fluid.data(name='scores', shape=[None, 1, 81],
                                      dtype='float32')
            out = fluid.layers.locality_aware_nms(bboxes=boxes,
                                              scores=scores,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
    """
    shape = scores.shape
    assert len(shape) == 3, "dim size of scores must be 3"
    assert shape[
        1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"

    helper = LayerHelper('locality_aware_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    out = {'Out': output}

    helper.append_op(
        type="locality_aware_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True

    return output


3269 3270 3271 3272 3273 3274 3275
def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
W
wangguanzhong 已提交
3276 3277 3278 3279 3280 3281
    **This op only takes LoDTensor as input.** In Feature Pyramid Networks 
    (FPN) models, it is needed to distribute all proposals into different FPN 
    level, with respect to scale of the proposals, the referring scale and the 
    referring level. Besides, to restore the order of proposals, we return an 
    array which indicates the original index of rois in current proposals. 
    To compute FPN level for each roi, the formula is given as follows:
3282
    
J
jerrywgz 已提交
3283
    .. math::
3284

J
jerrywgz 已提交
3285
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
3286

J
jerrywgz 已提交
3287 3288 3289
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
3290 3291

    Args:
W
wangguanzhong 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303

        fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is 
            float32 or float64. The input fpn_rois.
        min_level(int32): The lowest level of FPN layer where the proposals come 
            from.
        max_level(int32): The highest level of FPN layer where the proposals
            come from.
        refer_level(int32): The referring level of FPN layer with specified scale.
        refer_scale(int32): The referring scale of FPN layer with specified level.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
3304

3305
    Returns:
W
wangguanzhong 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
        Tuple:

        multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] 
        and data type of float32 and float64. The length is 
        max_level-min_level+1. The proposals in each FPN level.

        restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is 
        the number of total rois. The data type is int32. It is
        used to restore the order of fpn_rois.

3316 3317 3318 3319

    Examples:
        .. code-block:: python

3320
            import paddle.fluid as fluid
3321 3322
            fpn_rois = fluid.data(
                name='data', shape=[None, 4], dtype='float32', lod_level=1)
3323
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
3324 3325 3326
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
3327 3328 3329 3330 3331
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
3332
    dtype = helper.input_dtype('fpn_rois')
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
3350 3351


3352
@templatedoc()
J
jerrywgz 已提交
3353 3354 3355 3356 3357 3358
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
3359 3360 3361 3362 3363 3364 3365
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
3366
        box_clip(${box_clip_type}): ${box_clip_comment}
W
wangguanzhong 已提交
3367 3368 3369 3370
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 

3371
    Returns:
W
wangguanzhong 已提交
3372
        Tuple:
J
jerrywgz 已提交
3373

W
wangguanzhong 已提交
3374 3375 3376
        decode_box(${decode_box_type}): ${decode_box_comment}

        output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
J
jerrywgz 已提交
3377 3378


3379 3380 3381
    Examples:
        .. code-block:: python

3382
            import paddle.fluid as fluid
3383 3384 3385 3386 3387 3388 3389 3390
            pb = fluid.data(
                name='prior_box', shape=[None, 4], dtype='float32')
            pbv = fluid.data(
                name='prior_box_var', shape=[4], dtype='float32')
            loc = fluid.data(
                name='target_box', shape=[None, 4*81], dtype='float32')
            scores = fluid.data(
                name='scores', shape=[None, 81], dtype='float32')
J
jerrywgz 已提交
3391
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
3392
                pb, pbv, loc, scores, 4.135)
3393 3394 3395 3396

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
3397
    decoded_box = helper.create_variable_for_type_inference(
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
3412
            "DecodeBox": decoded_box,
3413 3414
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
3415
    return decoded_box, output_assign_box
3416 3417 3418 3419 3420 3421 3422 3423 3424


def collect_fpn_proposals(multi_rois,
                          multi_scores,
                          min_level,
                          max_level,
                          post_nms_top_n,
                          name=None):
    """
W
wangguanzhong 已提交
3425 3426 3427
    **This OP only supports LoDTensor as input**. Concat multi-level RoIs 
    (Region of Interest) and select N RoIs with respect to multi_scores. 
    This operation performs the following steps:
3428 3429 3430 3431 3432 3433 3434 3435

    1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
    2. Concat multi-level RoIs and scores
    3. Sort scores and select post_nms_top_n scores
    4. Gather RoIs by selected indices from scores
    5. Re-sort RoIs by corresponding batch_id

    Args:
W
wangguanzhong 已提交
3436 3437 3438 3439 3440 3441
        multi_rois(list): List of RoIs to collect. Element in list is 2-D 
            LoDTensor with shape [N, 4] and data type is float32 or float64, 
            N is the number of RoIs.
        multi_scores(list): List of scores of RoIs to collect. Element in list 
            is 2-D LoDTensor with shape [N, 1] and data type is float32 or
            float64, N is the number of RoIs.
3442 3443 3444
        min_level(int): The lowest level of FPN layer to collect
        max_level(int): The highest level of FPN layer to collect
        post_nms_top_n(int): The number of selected RoIs
W
wangguanzhong 已提交
3445 3446 3447 3448
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.        

3449
    Returns:
W
wangguanzhong 已提交
3450 3451 3452 3453 3454
        Variable:

        fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is 
        float32 or float64. Selected RoIs. 

3455 3456 3457 3458

    Examples:
        .. code-block:: python
           
3459
            import paddle.fluid as fluid
3460 3461 3462
            multi_rois = []
            multi_scores = []
            for i in range(4):
3463 3464
                multi_rois.append(fluid.data(
                    name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1))
3465
            for i in range(4):
3466 3467
                multi_scores.append(fluid.data(
                    name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1))
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492

            fpn_rois = fluid.layers.collect_fpn_proposals(
                multi_rois=multi_rois, 
                multi_scores=multi_scores,
                min_level=2, 
                max_level=5, 
                post_nms_top_n=2000)
    """

    helper = LayerHelper('collect_fpn_proposals', **locals())
    dtype = helper.input_dtype('multi_rois')
    num_lvl = max_level - min_level + 1
    input_rois = multi_rois[:num_lvl]
    input_scores = multi_scores[:num_lvl]
    output_rois = helper.create_variable_for_type_inference(dtype)
    output_rois.stop_gradient = True
    helper.append_op(
        type='collect_fpn_proposals',
        inputs={
            'MultiLevelRois': input_rois,
            'MultiLevelScores': input_scores
        },
        outputs={'FpnRois': output_rois},
        attrs={'post_nms_topN': post_nms_top_n})
    return output_rois