mkldnn_reuse.h 61.6 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27 28 29 30 31
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

32 33
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
34
using user_function = std::function<std::shared_ptr<float>(const float*)>;
35
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
36

37
template <typename T, typename TForward,
38 39
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
40 41 42 43 44 45 46 47
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
48
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
49
        fwd_pd_(nullptr),
50 51 52
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
53

A
Adam 已提交
54
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
55
    const std::string key_p = key_ + "@fwd_p";
56 57 58
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
59
      forward_p = std::make_shared<TForward>(*fwd_pd_);
60 61 62 63 64
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
65
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
66
    const std::string key_p = key_ + "@bwd_p";
67 68 69
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
70
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
71 72 73 74 75
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
                                             "Error: BWD_PD should be set when "
                                             "getting BWD prim witk key: %s .",
                                             key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

91 92 93
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
94 95
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
96 97
  }

98
  template <typename T_out = T>
99
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
100 101
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
102
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
103 104 105
                                            "@dst_mem_p");
  }

106 107 108 109 110
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

111
  template <typename T_out = T>
112 113
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
114 115 116 117
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
118 119 120 121 122
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
123 124
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
125 126 127 128
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
129 130 131 132
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
133 134
  }

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "Error: BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr,
                                            "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "Error: BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

158
 protected:
159
  bool isCached() {
160 161 162 163 164 165 166
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

167
  bool isBwdCached() {
168
    const std::string key_pd = key_ + "@bwd_pd";
169 170 171
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

172 173 174 175 176 177 178 179 180 181 182 183
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_, platform::errors::Unavailable(
                       "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
184 185
  }

186 187 188 189 190 191
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
192 193 194 195 196 197 198 199 200 201 202
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

224 225
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
226
    // fwd_pd_ is set during grad by calling
227
    // AcquireForwardPrimitiveDescriptor
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

243
  template <typename... Args>
244
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
245
    // fwd_pd_ is set during grad by calling
246
    // AcquireForwardPrimitiveDescriptor
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

264 265 266 267 268 269
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

270
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
271
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
272
    const auto local_key = key_ + suffix;
273 274 275
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
276
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
277 278 279 280 281 282 283
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

284 285 286 287 288 289 290 291 292 293 294 295
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

296 297 298 299 300 301 302 303 304 305 306 307 308 309
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

310
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
311 312 313

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
314 315 316 317 318
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

319
  template <typename F = T>
320 321 322
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
323 324
      const std::string& suffix, bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
325 326 327 328 329 330 331 332
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
333 334 335 336 337 338
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
339 340 341 342 343 344 345 346
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

347
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
348 349
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
350 351 352 353 354 355 356 357 358
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
359
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
360 361 362 363 364 365 366 367

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
368 369
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
370 371 372 373 374 375 376 377
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

378 379 380 381 382 383
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

384 385 386 387
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_common_;
388
  std::string key_;
389 390
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
391
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
392 393 394
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
395 396 397 398
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
399 400 401
      : dev_ctx_(dev_ctx),
        engine_(engine),
        key_common_(base_key),
402 403 404
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
J
Jacek Czaja 已提交
405 406 407 408 409 410 411 412 413 414 415

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
416
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
417
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
418
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
419 420
  }

A
Adam 已提交
421
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
422
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
423
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
424 425 426
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
427
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
428 429 430 431
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
432
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
433 434 435 436 437 438 439
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

440 441 442 443 444 445 446 447 448 449 450 451
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
469
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
470 471 472 473 474 475 476
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

477
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
478
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
479
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
480 481 482 483 484 485 486
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
487
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
488 489 490 491 492 493 494
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
512
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
513 514
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
A
Adam 已提交
515 516 517
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
518 519 520 521 522 523
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
524 525
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
526 527 528
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
529 530
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
531 532 533 534 535 536
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
537

538
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
539

J
Jacek Czaja 已提交
540 541
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
542 543 544
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
545 546 547 548 549
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
550 551 552
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
553
        } else {
A
Adam 已提交
554 555 556
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
557
        }
A
Adam 已提交
558 559
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
560
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
561

562 563
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
564 565 566
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
567 568 569 570 571 572 573
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
574 575
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
576 577 578
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
579 580 581 582 583 584 585 586
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
587
  std::string key_common_;
588
  std::string key_;
J
Jacek Czaja 已提交
589 590
};

591 592 593
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
594 595
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
                      const MKLDNNDeviceContext& dev_ctx,
596 597
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
598
                      float scale_x, float scale_y, float scale_z,
599
                      const std::string& uniq_name)
600
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
601
            dev_ctx, engine, cpu_place,
602 603
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name)) {
604 605 606
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
607
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
608 609
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
610
          platform::errors::InvalidArgument("Wrong format set for X tensor."));
611 612 613

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
614
          platform::errors::InvalidArgument("Wrong layout set for Y tensor."));
615 616
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
617
          platform::errors::InvalidArgument("Wrong format set for Y tensor."));
618 619 620

      const auto src_x_tz = framework::vectorize(x->dims());
      const auto src_y_tz = framework::vectorize(y->dims());
621 622
      // if output tensor(z) is nullptr then we are computing into oneDNN
      // managed buffer
623 624 625
      auto rankdiff = x->dims().size() - y->dims().size();
      const auto dst_tz = (z == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                         : framework::vectorize(z->dims());
626

627
      auto src0_md = dnnl::memory::desc(
628
          src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
629
      auto src1_md = dnnl::memory::desc(
630
          src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
631
      if (rankdiff > 0) {  // Second input is of smaller rank than first
632 633 634
        std::vector<int64_t> dims1_ex(rankdiff, 1);
        dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                        src_y_tz.begin(), src_y_tz.end());
635
        src1_md = src1_md.reshape(dims1_ex);
636 637 638 639 640
      } else if (rankdiff < 0) {  // First input is of smaller than second
        std::vector<int64_t> dims0_ex(-rankdiff, 1);
        dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                        src_x_tz.begin(), src_x_tz.end());
        src0_md = src0_md.reshape(dims0_ex);
641
      }
642 643 644
      const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                       MKLDNNMemoryFormat::any);

645 646 647
      auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, dst_md);
648
    }
649 650 651 652 653 654
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
655
        this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
656
  }
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
689 690
};

691 692 693 694 695 696 697 698 699
template <typename T>
class BroadcastDataMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
                             const MKLDNNDeviceContext& dev_ctx,
                             const mkldnn::engine engine,
                             platform::Place cpu_place, const Tensor* x,
                             const Tensor* y, float scale_x, float scale_y,
J
jakpiase 已提交
700
                             const std::string& uniq_name,
701
                             const std::vector<int64_t>& input_dims)
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
            dev_ctx, engine, cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for X tensor."));

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for Y tensor."));
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for Y tensor."));

      const auto src0_tz = framework::vectorize(x->dims());

      const auto src0_md = dnnl::memory::desc(
          src0_tz, platform::MKLDNNGetDataType<T>(), x->format());
      const auto src1_md = dnnl::memory::desc(
J
jakpiase 已提交
726
          input_dims, platform::MKLDNNGetDataType<T>(), x->format());
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

      dnnl::primitive_attr attributes;
      attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
      attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, src0_md);
    }
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(framework::Tensor* input) {
    T* input_data = input->data<T>();
    memset(input_data, 0, this->fwd_pd_->src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src0_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
  }
};

752 753 754 755 756 757 758 759
template <typename T>
class ReductionMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, dnnl::reduction> {
 public:
  ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p,
                         const float eps, const MKLDNNDeviceContext& dev_ctx,
                         const mkldnn::engine engine, platform::Place cpu_place,
                         const Tensor* x, const Tensor* y,
760
                         const std::string& uniq_name,
J
jakpiase 已提交
761
                         std::vector<int64_t> y_tz)
762 763 764 765 766 767 768 769 770 771 772 773 774
      : platform::MKLDNNHandlerT<T, dnnl::reduction>(
            dev_ctx, engine, cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name,
                                (std::to_string(static_cast<int>(algo))))) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for X tensor."));

J
jakpiase 已提交
775
      const auto x_tz = framework::vectorize(x->dims());
776

J
jakpiase 已提交
777 778 779 780
      const auto x_md = dnnl::memory::desc(
          x_tz, platform::MKLDNNGetDataType<T>(), x->format());
      const auto y_md =
          memory::desc(y_tz, platform::MKLDNNGetDataType<T>(), x->format());
781

J
jakpiase 已提交
782
      this->AcquireForwardPrimitiveDescriptor(algo, x_md, y_md, p, eps);
783 784 785 786
    }
  }
};

787
template <typename T>
788 789 790
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
791
 public:
792 793 794 795
  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
                          const MKLDNNDeviceContext& dev_ctx, Place cpu_place,
                          const framework::Tensor* in_x,
796
                          const std::string& unique_name, bool is_inplaced)
797 798 799
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            is_inplaced ? platform::CreateKey(
                              dev_ctx, framework::vectorize(in_x->dims()), "a",
                              algorithm, unique_name)
                        : platform::CreateKey(
                              dev_ctx, framework::vectorize(in_x->dims()), "a",
                              unique_name)) {
    if (!this->isCached()) {
      float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
      float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
      // eltwise_linear means we are in scale op
      if (algorithm == mkldnn::algorithm::eltwise_linear) {
        bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
        auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
        alpha = (scale_tensor == nullptr) ? ctx.Attr<float>("scale")
                                          : (float)*(scale_tensor->data<T>());
        beta = ctx.Attr<float>("bias");
        // if bias_after_scale == true
        //   out = scale*X + bias
        // else
        //   out = scale*(X + bias) = scale*X + scale*bias
        if (!bias_after_scale) beta *= alpha;
      } else {
        // paddle uses beta but mkldnn uses alpha for swish
        if (algorithm == mkldnn::algorithm::eltwise_swish) {
          std::swap(alpha, beta);
        } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
          alpha = ctx.Attr<float>("threshold");
        }
      }
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
      PADDLE_ENFORCE(in_x->dims().size() >= 1 || in_x->dims().size() <= 6,
                     platform::errors::Unimplemented(
                         "Input dimension size can be 1, 2, 3, 4, "
                         "5, or 6, but now the dimension size is",
                         in_x->dims().size()));

      auto src_tz = framework::vectorize<int64_t>(in_x->dims());
      auto src_fmt =
          src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
      auto md = mkldnn::memory::desc(src_tz, platform::MKLDNNGetDataType<T>(),
                                     src_fmt);

      this->AcquireForwardPrimitiveDescriptor(
          mkldnn::prop_kind::forward_training, algorithm, md, alpha, beta);
    }
  }

  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
                          const MKLDNNDeviceContext& dev_ctx, Place cpu_place,
                          const framework::Tensor* in_x, const Tensor* out_grad,
                          const std::string& unique_name)
852 853 854
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
            platform::CreateKey(dev_ctx, framework::vectorize(in_x->dims()),
                                "a", unique_name)) {
    if (!this->isBwdCached()) {
      float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
      float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

      // paddle uses beta but mkldnn uses alpha for swish
      if (algorithm == mkldnn::algorithm::eltwise_swish) {
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
      }

      auto diff_dst_tz = framework::vectorize<int64_t>(out_grad->dims());

      auto src_fmt =
          diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
      auto diff_fmt =
          diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : out_grad->format();

      auto dims = framework::vectorize(in_x->dims());
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
      auto src_md = platform::MKLDNNMemDesc(
          dims, platform::MKLDNNGetDataType<T>(), src_fmt);

      this->AcquireForwardPrimitiveDescriptor(
          mkldnn::prop_kind::forward_training, algorithm, src_md, alpha, beta);
      this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                               alpha, beta);
    }
886
  }
887

888 889 890
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
891
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
892 893
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
894 895 896
  }
};

897
template <typename T>
898 899
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
900 901
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
902 903 904 905
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
906 907 908 909
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
910
      const MKLDNNMemoryFormat& fmt, void* ptr) {
911 912 913 914 915 916 917 918 919
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
920

A
Adam 已提交
921
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
922
                        ? platform::MKLDNNMemDesc(
923
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
924
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
925
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
926 927 928 929 930 931
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
932 933 934 935 936 937 938

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
939
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
940

A
Adam 已提交
941
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
942

A
Adam 已提交
943
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
944 945
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
946
      auto dst_data = output->mutable_data<T>(place);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
967 968 969 970
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
971

A
Adam 已提交
972
    std::vector<int64_t> strides(ndims);
973
    unsigned int total_stride = 1;
A
Adam 已提交
974 975
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
976 977
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
978 979 980 981
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
982 983 984
  }

 private:
A
Adam 已提交
985
  std::vector<int64_t> dims_;
986
  std::vector<int> axis_;
987
  std::vector<int> logical_axis_;
988 989
};

990 991
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
992
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
993 994 995 996 997 998 999
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        vtype_dst_(vtype),
        dtype_(dtype),
        dtype_dst_(dtype) {}

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       framework::proto::VarType::Type vtype_dst,
                       mkldnn::memory::data_type dtype_dst,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
        dtype_dst_(dtype_dst) {}
1017 1018

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1019
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1020
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
1021 1022
  }

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
  std::shared_ptr<mkldnn::memory> AcquireSrcSubmemory(
      const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
      const std::shared_ptr<mkldnn::memory>& mem_p, int submemory_number) {
    std::string local_key = key_;
    local_key.append("@submem")
        .append(std::to_string(submemory_number))
        .append("_p");

    auto sub_mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (sub_mem_p == nullptr) {
      auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
      sub_mem_p = std::make_shared<mkldnn::memory>(sub_md, engine_,
                                                   mem_p->get_data_handle());
      dev_ctx_.SetBlob(local_key, sub_mem_p);
    } else {
      sub_mem_p->set_data_handle(mem_p->get_data_handle());
    }
    return sub_mem_p;
  }

1044
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1045
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1046 1047 1048 1049 1050
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
1051 1052 1053
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
      auto dst_data =
          output->mutable_data(place, vtype_dst_, dst_md.get_size());
1054

A
Adam 已提交
1055
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1056 1057
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
1058 1059
      // Even if memory object exists , we may be using it for diffrent tensor
      auto dst_data =
1060
          output->mutable_data(place, vtype_dst_, mem_p->get_desc().get_size());
1061 1062 1063 1064 1065
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      framework::Tensor* output, const std::vector<int64_t>& dims,
      const int memory_number, const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
    auto local_key =
        key_ + "@user_dst_mem" + std::to_string(memory_number) + "_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
      auto dst_data =
          output->mutable_data(place, vtype_dst_, dst_md.get_size());

      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      // Even if memory object exists , we may be using it for diffrent tensor
      auto dst_data =
          output->mutable_data(place, vtype_dst_, mem_p->get_desc().get_size());
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p, int reorder_number) {
    auto prim_key = key_ + "@reorder" + std::to_string(reorder_number) + "_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
1119
  std::vector<int64_t> dims_;
1120 1121
  framework::proto::VarType::Type vtype_, vtype_dst_;
  mkldnn::memory::data_type dtype_, dtype_dst_;
1122 1123
};

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1138 1139 1140
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1141 1142 1143 1144
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1145 1146 1147 1148 1149 1150 1151 1152 1153
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1171
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1172

1173
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1174
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1175 1176 1177
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1178
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1179 1180 1181
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1182
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1183 1184 1185 1186 1187
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1188 1189
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1190 1191 1192 1193 1194 1195 1196
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1197 1198
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1199 1200 1201 1202 1203 1204 1205
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1206
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1207 1208
  }

1209 1210 1211 1212 1213 1214
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p");
  }

J
Jacek Czaja 已提交
1215 1216 1217
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1218 1219
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1220 1221 1222 1223 1224 1225 1226
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1227 1228
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1249 1250
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1251 1252 1253
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1254
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1255 1256 1257 1258 1259 1260
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1261 1262
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1263 1264 1265 1266
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1278 1279 1280
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1281 1282
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1283 1284
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1285 1286 1287
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1288 1289 1290 1291
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1292 1293 1294 1295
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1296 1297
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1298
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1299 1300
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1301 1302
  }

1303
  mkldnn::primitive_attr CreatePostOps(
1304 1305
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1306
      float sum_scale = 1.0f) const {
1307 1308
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1309 1310 1311 1312
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1313 1314 1315 1316 1317 1318
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1319
      post_operations.append_sum(sum_scale);
1320 1321 1322
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1323
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1324 1325
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1326
                                     fuse_alpha, fuse_beta);
1327
    } else if (fuse_activation == "relu6") {
1328 1329 1330
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1331
                                     fuse_alpha, fuse_beta);
1332 1333 1334 1335
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1336
    }
1337 1338 1339 1340 1341 1342 1343 1344
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1345
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
1346
      const std::vector<int64_t>& dilations,
A
Adam 已提交
1347
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1348 1349
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1350 1351
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1352 1353 1354 1355
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1356

1357
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1358 1359
        dev_ctx_.GetBlob(key_conv_pd));

1360 1361 1362 1363 1364 1365 1366 1367 1368
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1369
        mkldnn::memory::dims dilations_dims = dilations;
1370
        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1371 1372

        auto conv_desc =
A
Adam 已提交
1373 1374
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1375
                       src, weights, *bias, dst, stride_dims, dilations_dims,
A
Adam 已提交
1376 1377 1378
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1379 1380
                       src, weights, dst, stride_dims, dilations_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1]);
1381

1382
        mkldnn::primitive_attr conv_attr =
1383 1384
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1385 1386 1387 1388 1389 1390

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1391 1392 1393 1394 1395
    }

    return conv_pd_;
  }

A
Adam 已提交
1396
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1397 1398 1399 1400
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1401
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1402 1403 1404 1405 1406 1407

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1408
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1409 1410 1411 1412 1413
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1414 1415
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1416 1417 1418 1419 1420
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1421
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1422 1423 1424 1425
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1426
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1468 1469 1470 1471
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
G
GaoWei8 已提交
1472
                                           "fusion, but now it is missing."));
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1493 1494 1495
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1496 1497
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1498 1499
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1500 1501
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1502
  MKLDNNMemoryFormat dst_fmt;
G
GaoWei8 已提交
1503 1504 1505 1506
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1507
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1508

A
Adam 已提交
1509
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1510
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1511
                    framework::DataTypeTrait<T>::DataType()),
1512
      dst_fmt);
A
Adam 已提交
1513 1514 1515
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1516
}
J
Jacek Czaja 已提交
1517 1518
}  // namespace platform
}  // namespace paddle