mkldnn_reuse.h 47.3 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
31
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
32

33 34
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive>
35 36 37 38 39 40 41 42 43 44
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
45 46
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
47 48 49 50 51 52
      key_ = key_common_;
    } else {
      key_ = key_common_ + "-t:" + ThreadIDasStr();
    }
  }

A
Adam 已提交
53
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
54 55 56 57
    const std::string key_p = key_ + "@forward_p";
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
58
      forward_p = std::make_shared<TForward>(*fwd_pd_);
59 60 61 62 63
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
64
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
65 66 67 68
    const std::string key_p = key_ + "@backward_p";
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
69
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
70 71 72 73 74
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

75 76 77
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
78 79
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
80 81 82
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
A
Adam 已提交
83 84
    T* ptr = output->mutable_data<T>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
85 86 87 88 89 90
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T* output_data = output->data<T>();
A
Adam 已提交
91 92
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->dst_desc(), to_void_cast<T>(output_data), "@bwd-dst_mem_p");
93 94 95 96 97
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
98 99
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
100 101 102 103
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
104 105 106 107
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
108 109
  }

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
 protected:
  template <typename... Args>
  void AcquireForwardPrimitiveDescriptor(Args&&... args) {
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
        auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
        fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(fwd_desc,
                                                                      engine_);
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
136 137 138
    const std::string key_fwd_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
139 140 141 142 143 144 145 146 147 148 149 150
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_);
    const std::string key_pd = key_ + "@backward_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

151
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
152
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
153 154 155 156
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
157
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_;
  std::string key_common_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
175 176 177 178
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
179
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
180 181
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
182
      key_ = key_common_;
183
    } else {
A
Adam 已提交
184
      key_ = key_common_ + "-t:" + ThreadIDasStr();
185
    }
186
  }
J
Jacek Czaja 已提交
187 188 189 190 191 192 193 194 195 196 197

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
198
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
199
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
200
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
201 202
  }

A
Adam 已提交
203
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
204
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
205
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
206 207 208
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
209
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
210 211 212 213
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
214
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
239
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
240 241 242 243 244 245 246
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

247
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
248
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
249
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
250 251 252 253 254 255 256
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
257
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
258 259 260 261 262 263 264
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
282 283 284 285
      mkldnn::stream astream(engine_);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
286 287 288 289 290 291
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
292 293
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
294 295 296
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
297 298
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
299 300 301 302 303 304
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
305 306 307

    mkldnn::stream astream(engine_);

J
Jacek Czaja 已提交
308 309
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
310 311 312
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
313 314 315 316 317
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
318 319 320
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
321
        } else {
A
Adam 已提交
322 323 324
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
325
        }
A
Adam 已提交
326 327
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
328
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
329 330 331 332

        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
333 334 335 336 337 338 339
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
A
Adam 已提交
340 341 342
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
343 344 345 346 347 348 349 350 351
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
352
  std::string key_common_;
J
Jacek Czaja 已提交
353 354
};

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
  BinaryMKLDNNHandler(const dnnl::algorithm algo,
                      const std::vector<int64_t>& dims,
                      const MKLDNNMemoryFormat src0_fmt,
                      const MKLDNNMemoryFormat src1_fmt,
                      const platform::MKLDNNDeviceContext& dev_ctx,
                      platform::Place cpu_place, const std::string& uniq_name)
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dims, uniq_name)) {
    // TODO(jczaja): Add function checking if data already exists
    auto src0_md = dnnl::memory::desc(dims, MKLDNNGetDataType<T>(), src0_fmt);
    auto src1_md = dnnl::memory::desc(dims, MKLDNNGetDataType<T>(), src1_fmt);
    auto dst_md =
        memory::desc(dims, MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    this->AcquireForwardPrimitiveDescriptor(algo, src0_md, src1_md, dst_md);
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
  }
};

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
class SumMKLDNNHandler : public MKLDNNHandler {
 public:
  SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                   mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  std::shared_ptr<mkldnn::sum::primitive_desc> AcquireSumPrimitiveDescriptor(
      const std::vector<std::shared_ptr<mkldnn::memory>>& src_mems,
      const std::vector<float>& scales, const mkldnn::memory::desc& dst_md) {
    const std::string key_sum_pd = key_ + "@sum_pd";

    sum_pd_ = std::static_pointer_cast<mkldnn::sum::primitive_desc>(
        dev_ctx_.GetBlob(key_sum_pd));
    if (sum_pd_ == nullptr) {
      // Get vector of inputs primitive descriptors
A
Adam 已提交
399
      std::vector<mkldnn::memory::desc> src_ds;
400
      for (auto& input_mem : src_mems) {
A
Adam 已提交
401
        src_ds.push_back(input_mem->get_desc());
402 403
      }

A
Adam 已提交
404 405
      sum_pd_.reset(
          new mkldnn::sum::primitive_desc(dst_md, scales, src_ds, engine_));
406 407 408 409 410 411 412
      dev_ctx_.SetBlob(key_sum_pd, sum_pd_);
    }

    return sum_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
413
    return this->AcquireMemoryFromPrimitive(sum_pd_->dst_desc(), ptr,
414 415 416
                                            "@dst_mem_p");
  }

A
Adam 已提交
417 418 419 420 421
  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src2_mem_p");
  }

A
Adam 已提交
422
  std::shared_ptr<mkldnn::sum> AcquireSum() {
423 424 425 426
    auto prim_key = key_ + "@sum_p";
    auto sum_p =
        std::static_pointer_cast<mkldnn::sum>(dev_ctx_.GetBlob(prim_key));
    if (sum_p == nullptr) {
A
Adam 已提交
427
      sum_p = std::make_shared<mkldnn::sum>(*sum_pd_);
428 429 430 431 432 433 434 435 436
      dev_ctx_.SetBlob(prim_key, sum_p);
    }
    return sum_p;
  }

 private:
  std::shared_ptr<mkldnn::sum::primitive_desc> sum_pd_;
};

437
template <typename T>
438 439 440
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
441
 public:
A
Adam 已提交
442
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
443
                          mkldnn::algorithm algorithm, float alpha, float beta,
444
                          const MKLDNNMemoryFormat fmt,
445 446 447 448
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

449 450 451
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
452
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
453 454
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

455 456
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
457
  }
458

A
Adam 已提交
459
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
460 461 462 463 464 465 466
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

467 468 469
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
470
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
471 472 473 474 475 476 477
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
478
  }
479

480 481 482
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
483
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
484 485
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
486 487 488
  }
};

J
Jacek Czaja 已提交
489 490 491
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
492
 public:
A
Adam 已提交
493 494
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
495 496 497
                   const MKLDNNMemoryFormat fmt, bool is_test,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
498

J
Jacek Czaja 已提交
499 500
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
501
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
502 503 504 505 506
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
A
Adam 已提交
507
        mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
508 509
  }

A
Adam 已提交
510 511
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
512 513 514 515
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
516

J
Jacek Czaja 已提交
517 518
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
519
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
520 521 522 523
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
524

J
Jacek Czaja 已提交
525
    this->AcquireBackwardPrimitiveDescriptor(
A
Adam 已提交
526 527
        mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
        k);
528 529
  }

J
Jacek Czaja 已提交
530 531 532
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
A
Adam 已提交
533 534 535
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            ptr, "@wrk_mem_p");
J
Jacek Czaja 已提交
536 537 538 539 540
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
A
Adam 已提交
541 542 543
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            to_void_cast<T>(workspace_data),
                                            "@bwd-wrk_mem_p");
J
Jacek Czaja 已提交
544
  }
545 546
};

547 548 549
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
550
 public:
551
  PoolingMKLDNNHandler(
A
Adam 已提交
552 553 554 555 556
      const std::vector<int64_t>& src_dims,
      const std::vector<int64_t>& dst_dims, const std::vector<int64_t>& ksize,
      const std::vector<int64_t>& strides, const std::vector<int64_t>& paddings,
      const std::string& pooling_type, bool ceil_mode,
      const MKLDNNMemoryFormat fmt, mkldnn::memory::data_type dt, bool is_test,
557
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
558
      const std::string& unique_name, bool exclude_padding)
559 560 561
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
562
            platform::CreateKey(src_dims, dt, unique_name)) {
563 564 565 566 567 568 569 570
    auto src_md = mkldnn::memory::desc(src_dims, dt, fmt);
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
    auto dst_md =
        platform::MKLDNNMemDesc(dst_dims, dt, MKLDNNMemoryFormat::any);

571 572
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

573 574
    if (ceil_mode) {
      CorrectOutputSize(src_dims, dst_dims, ksize, paddings, strides,
575
                        mkldnn_paddings[1]);
576
    }
577 578 579
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
580 581 582 583 584
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
A
Adam 已提交
585
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
586 587 588
  }

  PoolingMKLDNNHandler(
A
Adam 已提交
589 590 591 592 593 594
      const std::vector<int64_t>& diff_dst_dims,
      const std::vector<int64_t>& diff_src_dims,
      const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
595
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
596
      const std::string& unique_name, bool exclude_padding)
597 598 599
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
600
            platform::CreateKey(diff_src_dims, dt, unique_name)) {
601 602 603 604 605 606
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

607 608
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

609
    this->AcquireBackwardPrimitiveDescriptor(
610 611 612 613 614
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
615
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
A
Adam 已提交
616
        mkldnn_paddings[1]);
617 618 619
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
A
Adam 已提交
620
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
621 622 623
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
624 625 626
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
627 628 629 630
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
631 632
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
633
      if (mem_p == nullptr) {
A
Adam 已提交
634
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
635
        this->dev_ctx_.SetBlob(local_key, mem_p);
636 637 638 639 640 641 642 643 644 645 646 647
      }
    }
    return mem_p;
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
A
Adam 已提交
648 649 650 651
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
652 653 654 655
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
656
        right_bot_padding[i] += strides[i] - 1;
657 658 659 660 661
      }
    }
  }
};

662
template <typename T>
663 664
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
665 666
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
667 668 669 670
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
671 672 673 674
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
675
      const MKLDNNMemoryFormat& fmt, void* ptr) {
676 677 678 679 680 681 682 683 684
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
685

A
Adam 已提交
686
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
687
                        ? platform::MKLDNNMemDesc(
688
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
689
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
690
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
691 692 693 694 695 696
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
697 698 699 700 701 702 703

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
704
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
705

A
Adam 已提交
706
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
707

A
Adam 已提交
708
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
709 710
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
711
      auto dst_data = output->mutable_data<T>(place);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
732 733 734 735
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
736

A
Adam 已提交
737
    std::vector<int64_t> strides(ndims);
738
    unsigned int total_stride = 1;
A
Adam 已提交
739 740
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
741 742
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
743 744 745 746
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
747 748 749
  }

 private:
A
Adam 已提交
750
  std::vector<int64_t> dims_;
751
  std::vector<int> axis_;
752
  std::vector<int> logical_axis_;
753 754
};

755 756
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
757
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
758 759 760 761 762 763 764 765 766 767
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
768
      const MKLDNNMemoryFormat& fmt, void* ptr) {
769
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
770 771 772
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
773
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
774 775 776 777 778 779 780 781 782
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);

      auto dst_data = output->mutable_data(place, vtype_);

A
Adam 已提交
783
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
807
  std::vector<int64_t> dims_;
808 809 810 811
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

812 813 814 815 816 817 818 819 820 821 822 823 824 825
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
826 827 828
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
829 830 831 832
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

833 834 835 836 837 838 839 840 841
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
859
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
860

861
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
862
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
863 864 865
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
866
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
867 868 869
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
870
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
871 872 873 874 875
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
876 877
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
878 879 880 881 882 883 884
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
885 886
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
887 888 889 890 891 892 893
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
894
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
895 896 897 898 899
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
900 901
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
902 903 904 905 906 907 908
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
909 910
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
931 932
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
933 934 935
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
936
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
937 938 939 940 941 942
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
943 944
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
945 946 947 948
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
949 950 951 952 953 954 955 956 957 958 959
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
960 961 962
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
963 964
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
965 966
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
967 968 969
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
970 971 972 973
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
974 975 976 977
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
978 979
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
980
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
981 982
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
983 984
  }

985
  mkldnn::primitive_attr CreatePostOps(
986 987
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
988
      float sum_scale = 1.0f) const {
989 990
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
991 992 993 994
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
995 996 997 998 999 1000
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1001
      post_operations.append_sum(sum_scale);
1002 1003 1004
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1005
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1006 1007
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1008
                                     fuse_alpha, fuse_beta);
1009
    } else if (fuse_activation == "relu6") {
1010 1011 1012
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1013
                                     fuse_alpha, fuse_beta);
1014 1015 1016 1017
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1018
    }
1019 1020 1021 1022 1023 1024 1025 1026
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1027 1028
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1029 1030
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1031 1032
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1033 1034 1035 1036
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1037

1038
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1039 1040
        dev_ctx_.GetBlob(key_conv_pd));

1041 1042 1043 1044 1045 1046 1047 1048 1049
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1050 1051

        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1052 1053

        auto conv_desc =
A
Adam 已提交
1054 1055 1056 1057 1058 1059 1060 1061
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, *bias, dst, stride_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, dst, stride_dims, mkldnn_paddings[0],
                       mkldnn_paddings[1]);
1062

1063
        mkldnn::primitive_attr conv_attr =
1064 1065
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1066 1067 1068 1069 1070 1071

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1072 1073 1074 1075 1076
    }

    return conv_pd_;
  }

A
Adam 已提交
1077
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1078 1079 1080 1081
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1082
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1083 1084 1085 1086 1087 1088

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1089
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1090 1091 1092 1093 1094
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1095 1096
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1097 1098 1099 1100 1101
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1102
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1103 1104 1105 1106
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1107
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
  PADDLE_ENFORCE(residual_param_data != nullptr,
                 "Provide data if you want MKLDNN conv+elementwise_add fusion");
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1171 1172 1173
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1174 1175
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1176 1177
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1178 1179
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1180 1181 1182
  MKLDNNMemoryFormat dst_fmt;
  PADDLE_ENFORCE_LE(dst_dims, 5,
                    "Dst memory for quantization can not have dims > 5");
1183
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1184

A
Adam 已提交
1185
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1186
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1187
                    framework::DataTypeTrait<T>::DataType()),
1188
      dst_fmt);
A
Adam 已提交
1189 1190 1191
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1192 1193
}

J
Jacek Czaja 已提交
1194 1195
}  // namespace platform
}  // namespace paddle