mkldnn_reuse.h 48.7 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23 24 25 26 27 28 29
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

30 31
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
32
using user_function = std::function<std::shared_ptr<float>(const float*)>;
33
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
34

35 36
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive>
37 38 39 40 41 42 43 44 45 46
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
47 48
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
49 50 51 52 53 54
      key_ = key_common_;
    } else {
      key_ = key_common_ + "-t:" + ThreadIDasStr();
    }
  }

A
Adam 已提交
55
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
56 57 58 59
    const std::string key_p = key_ + "@forward_p";
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
60
      forward_p = std::make_shared<TForward>(*fwd_pd_);
61 62 63 64 65
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
66
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
67 68 69 70
    const std::string key_p = key_ + "@backward_p";
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
71
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
72 73 74 75 76
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

77 78 79
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
80 81
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
82 83 84
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
A
Adam 已提交
85 86
    T* ptr = output->mutable_data<T>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
87 88 89 90 91 92
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T* output_data = output->data<T>();
A
Adam 已提交
93 94
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->dst_desc(), to_void_cast<T>(output_data), "@bwd-dst_mem_p");
95 96 97 98 99
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
100 101
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
102 103 104 105
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
106 107 108 109
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
110 111
  }

112
 protected:
113 114 115 116 117 118 119
  bool isCached() {
    const std::string key_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    return (fwd_pd_ != nullptr);
  }

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  template <typename... Args>
  void AcquireForwardPrimitiveDescriptor(Args&&... args) {
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
        auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
        fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(fwd_desc,
                                                                      engine_);
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
145 146 147
    const std::string key_fwd_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
148 149 150 151 152 153 154 155 156 157 158 159
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_);
    const std::string key_pd = key_ + "@backward_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

160
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
161
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
162 163 164 165
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
166
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_;
  std::string key_common_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
184 185 186 187
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
188
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
189 190
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
191
      key_ = key_common_;
192
    } else {
A
Adam 已提交
193
      key_ = key_common_ + "-t:" + ThreadIDasStr();
194
    }
195
  }
J
Jacek Czaja 已提交
196 197 198 199 200 201 202 203 204 205 206

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
207
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
208
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
209
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
210 211
  }

A
Adam 已提交
212
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
213
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
214
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
215 216 217
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
218
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
219 220 221 222
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
223
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
248
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
249 250 251 252 253 254 255
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

256
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
257
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
258
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
259 260 261 262 263 264 265
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
266
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
267 268 269 270 271 272 273
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
291 292 293 294
      mkldnn::stream astream(engine_);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
295 296 297 298 299 300
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
301 302
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
303 304 305
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
306 307
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
308 309 310 311 312 313
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
314 315 316

    mkldnn::stream astream(engine_);

J
Jacek Czaja 已提交
317 318
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
319 320 321
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
322 323 324 325 326
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
327 328 329
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
330
        } else {
A
Adam 已提交
331 332 333
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
334
        }
A
Adam 已提交
335 336
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
337
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
338 339 340 341

        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
342 343 344 345 346 347 348
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
A
Adam 已提交
349 350 351
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
352 353 354 355 356 357 358 359 360
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
361
  std::string key_common_;
J
Jacek Czaja 已提交
362 363
};

364 365 366
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
367 368 369 370
  BinaryMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
                      const std::string uniq_name)
371
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
            dev_ctx, engine, cpu_place,
            platform::CreateKey(framework::vectorize(x->dims()), uniq_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for X tensor"));
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for X tensor"));

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for Y tensor"));
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for Y tensor"));

      const auto src_x_tz = framework::vectorize(x->dims());
      const auto src_y_tz = framework::vectorize(y->dims());
      const auto dst_tz = framework::vectorize(z->dims());

      // TODO(jczaja): Add function checking if data already exists
      const auto src0_md = dnnl::memory::desc(
          src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
      const auto src1_md = dnnl::memory::desc(
          src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
      const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                       MKLDNNMemoryFormat::any);

      // Currently MKL-DNN kernel supports only Z <- X + Y, shape(X) == shape(Y)
      // TODO(jczaja): Binary primitive support broadcasting, so we can support
      // this in kernel
      this->AcquireForwardPrimitiveDescriptor(dnnl::algorithm::binary_add,
                                              src0_md, src1_md, dst_md);
    }
407 408 409 410 411 412 413 414 415 416
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
  }
};

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
class SumMKLDNNHandler : public MKLDNNHandler {
 public:
  SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                   mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  std::shared_ptr<mkldnn::sum::primitive_desc> AcquireSumPrimitiveDescriptor(
      const std::vector<std::shared_ptr<mkldnn::memory>>& src_mems,
      const std::vector<float>& scales, const mkldnn::memory::desc& dst_md) {
    const std::string key_sum_pd = key_ + "@sum_pd";

    sum_pd_ = std::static_pointer_cast<mkldnn::sum::primitive_desc>(
        dev_ctx_.GetBlob(key_sum_pd));
    if (sum_pd_ == nullptr) {
      // Get vector of inputs primitive descriptors
A
Adam 已提交
432
      std::vector<mkldnn::memory::desc> src_ds;
433
      for (auto& input_mem : src_mems) {
A
Adam 已提交
434
        src_ds.push_back(input_mem->get_desc());
435 436
      }

A
Adam 已提交
437 438
      sum_pd_.reset(
          new mkldnn::sum::primitive_desc(dst_md, scales, src_ds, engine_));
439 440 441 442 443 444 445
      dev_ctx_.SetBlob(key_sum_pd, sum_pd_);
    }

    return sum_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
446
    return this->AcquireMemoryFromPrimitive(sum_pd_->dst_desc(), ptr,
447 448 449
                                            "@dst_mem_p");
  }

A
Adam 已提交
450 451 452 453 454
  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src2_mem_p");
  }

A
Adam 已提交
455
  std::shared_ptr<mkldnn::sum> AcquireSum() {
456 457 458 459
    auto prim_key = key_ + "@sum_p";
    auto sum_p =
        std::static_pointer_cast<mkldnn::sum>(dev_ctx_.GetBlob(prim_key));
    if (sum_p == nullptr) {
A
Adam 已提交
460
      sum_p = std::make_shared<mkldnn::sum>(*sum_pd_);
461 462 463 464 465 466 467 468 469
      dev_ctx_.SetBlob(prim_key, sum_p);
    }
    return sum_p;
  }

 private:
  std::shared_ptr<mkldnn::sum::primitive_desc> sum_pd_;
};

470
template <typename T>
471 472 473
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
474
 public:
A
Adam 已提交
475
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
476
                          mkldnn::algorithm algorithm, float alpha, float beta,
477
                          const MKLDNNMemoryFormat fmt,
478 479 480 481
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

482 483 484
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
485
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
486 487
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

488 489
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
490
  }
491

A
Adam 已提交
492
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
493 494 495 496 497 498 499
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

500 501 502
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
503
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
504 505 506 507 508 509 510
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
511
  }
512

513 514 515
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
516
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
517 518
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
519 520 521
  }
};

J
Jacek Czaja 已提交
522 523 524
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
525
 public:
A
Adam 已提交
526 527
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
528 529 530
                   const MKLDNNMemoryFormat fmt, bool is_test,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
531

J
Jacek Czaja 已提交
532 533
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
534
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
535 536 537 538 539
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
A
Adam 已提交
540
        mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
541 542
  }

A
Adam 已提交
543 544
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
545 546 547 548
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
549

J
Jacek Czaja 已提交
550 551
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
552
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
553 554 555 556
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
557

J
Jacek Czaja 已提交
558
    this->AcquireBackwardPrimitiveDescriptor(
A
Adam 已提交
559 560
        mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
        k);
561 562
  }

J
Jacek Czaja 已提交
563 564 565
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
A
Adam 已提交
566 567 568
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            ptr, "@wrk_mem_p");
J
Jacek Czaja 已提交
569 570 571 572 573
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
A
Adam 已提交
574 575 576
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            to_void_cast<T>(workspace_data),
                                            "@bwd-wrk_mem_p");
J
Jacek Czaja 已提交
577
  }
578 579
};

580 581 582
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
583
 public:
584
  PoolingMKLDNNHandler(
A
Adam 已提交
585 586 587 588 589
      const std::vector<int64_t>& src_dims,
      const std::vector<int64_t>& dst_dims, const std::vector<int64_t>& ksize,
      const std::vector<int64_t>& strides, const std::vector<int64_t>& paddings,
      const std::string& pooling_type, bool ceil_mode,
      const MKLDNNMemoryFormat fmt, mkldnn::memory::data_type dt, bool is_test,
590
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
591
      const std::string& unique_name, bool exclude_padding)
592 593 594
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
595
            platform::CreateKey(src_dims, dt, unique_name)) {
596 597 598 599 600 601 602 603
    auto src_md = mkldnn::memory::desc(src_dims, dt, fmt);
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
    auto dst_md =
        platform::MKLDNNMemDesc(dst_dims, dt, MKLDNNMemoryFormat::any);

604 605
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

606 607
    if (ceil_mode) {
      CorrectOutputSize(src_dims, dst_dims, ksize, paddings, strides,
608
                        mkldnn_paddings[1]);
609
    }
610 611 612
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
613 614 615 616 617
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
A
Adam 已提交
618
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
619 620 621
  }

  PoolingMKLDNNHandler(
A
Adam 已提交
622 623 624 625 626 627
      const std::vector<int64_t>& diff_dst_dims,
      const std::vector<int64_t>& diff_src_dims,
      const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
628
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
629
      const std::string& unique_name, bool exclude_padding)
630 631 632
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
633
            platform::CreateKey(diff_src_dims, dt, unique_name)) {
634 635 636 637 638 639
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

640 641
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

642
    this->AcquireBackwardPrimitiveDescriptor(
643 644 645 646 647
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
648
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
A
Adam 已提交
649
        mkldnn_paddings[1]);
650 651 652
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
A
Adam 已提交
653
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
654 655 656
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
657 658 659
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
660 661 662 663
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
664 665
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
666
      if (mem_p == nullptr) {
A
Adam 已提交
667
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
668
        this->dev_ctx_.SetBlob(local_key, mem_p);
669 670 671 672 673 674 675 676 677 678 679 680
      }
    }
    return mem_p;
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
A
Adam 已提交
681 682 683 684
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
685 686 687 688
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
689
        right_bot_padding[i] += strides[i] - 1;
690 691 692 693 694
      }
    }
  }
};

695
template <typename T>
696 697
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
698 699
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
700 701 702 703
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
704 705 706 707
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
708
      const MKLDNNMemoryFormat& fmt, void* ptr) {
709 710 711 712 713 714 715 716 717
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
718

A
Adam 已提交
719
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
720
                        ? platform::MKLDNNMemDesc(
721
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
722
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
723
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
724 725 726 727 728 729
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
730 731 732 733 734 735 736

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
737
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
738

A
Adam 已提交
739
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
740

A
Adam 已提交
741
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
742 743
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
744
      auto dst_data = output->mutable_data<T>(place);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
765 766 767 768
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
769

A
Adam 已提交
770
    std::vector<int64_t> strides(ndims);
771
    unsigned int total_stride = 1;
A
Adam 已提交
772 773
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
774 775
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
776 777 778 779
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
780 781 782
  }

 private:
A
Adam 已提交
783
  std::vector<int64_t> dims_;
784
  std::vector<int> axis_;
785
  std::vector<int> logical_axis_;
786 787
};

788 789
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
790
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
791 792 793 794 795 796 797 798 799 800
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
801
      const MKLDNNMemoryFormat& fmt, void* ptr) {
802
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
803 804 805
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
806
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
807 808 809 810 811 812 813 814 815
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);

      auto dst_data = output->mutable_data(place, vtype_);

A
Adam 已提交
816
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
840
  std::vector<int64_t> dims_;
841 842 843 844
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

845 846 847 848 849 850 851 852 853 854 855 856 857 858
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
859 860 861
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
862 863 864 865
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

866 867 868 869 870 871 872 873 874
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
892
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
893

894
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
895
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
896 897 898
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
899
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
900 901 902
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
903
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
904 905 906 907 908
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
909 910
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
911 912 913 914 915 916 917
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
918 919
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
920 921 922 923 924 925 926
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
927
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
928 929 930 931 932
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
933 934
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
935 936 937 938 939 940 941
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
942 943
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
964 965
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
966 967 968
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
969
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
970 971 972 973 974 975
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
976 977
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
978 979 980 981
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
982 983 984 985 986 987 988 989 990 991 992
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
993 994 995
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
996 997
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
998 999
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1000 1001 1002
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1003 1004 1005 1006
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1007 1008 1009 1010
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1011 1012
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1013
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1014 1015
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1016 1017
  }

1018
  mkldnn::primitive_attr CreatePostOps(
1019 1020
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1021
      float sum_scale = 1.0f) const {
1022 1023
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1024 1025 1026 1027
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1028 1029 1030 1031 1032 1033
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1034
      post_operations.append_sum(sum_scale);
1035 1036 1037
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1038
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1039 1040
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1041
                                     fuse_alpha, fuse_beta);
1042
    } else if (fuse_activation == "relu6") {
1043 1044 1045
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1046
                                     fuse_alpha, fuse_beta);
1047 1048 1049 1050
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1051
    }
1052 1053 1054 1055 1056 1057 1058 1059
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1060 1061
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1062 1063
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1064 1065
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1066 1067 1068 1069
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1070

1071
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1072 1073
        dev_ctx_.GetBlob(key_conv_pd));

1074 1075 1076 1077 1078 1079 1080 1081 1082
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1083 1084

        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1085 1086

        auto conv_desc =
A
Adam 已提交
1087 1088 1089 1090 1091 1092 1093 1094
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, *bias, dst, stride_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, dst, stride_dims, mkldnn_paddings[0],
                       mkldnn_paddings[1]);
1095

1096
        mkldnn::primitive_attr conv_attr =
1097 1098
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1099 1100 1101 1102 1103 1104

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1105 1106 1107 1108 1109
    }

    return conv_pd_;
  }

A
Adam 已提交
1110
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1111 1112 1113 1114
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1115
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1116 1117 1118 1119 1120 1121

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1122
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1123 1124 1125 1126 1127
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1128 1129
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1130 1131 1132 1133 1134
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1135
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1136 1137 1138 1139
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1140
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
  PADDLE_ENFORCE(residual_param_data != nullptr,
                 "Provide data if you want MKLDNN conv+elementwise_add fusion");
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1204 1205 1206
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1207 1208
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1209 1210
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1211 1212
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1213 1214 1215
  MKLDNNMemoryFormat dst_fmt;
  PADDLE_ENFORCE_LE(dst_dims, 5,
                    "Dst memory for quantization can not have dims > 5");
1216
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1217

A
Adam 已提交
1218
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1219
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1220
                    framework::DataTypeTrait<T>::DataType()),
1221
      dst_fmt);
A
Adam 已提交
1222 1223 1224
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1225 1226
}

J
Jacek Czaja 已提交
1227 1228
}  // namespace platform
}  // namespace paddle