mkldnn_reuse.h 36.1 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
J
Jacek Czaja 已提交
17 18
#include <string>
#include <vector>
19
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
20
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;

class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        key_(base_key),
        is_reusing_(false) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::primitive_desc mdp, void* ptr,
      const std::string& suffix) {
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(mdp, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
      pipeline.push_back(*reorder_p);
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
      mkldnn::memory::primitive_desc& mpd,       // NOLINT
      mkldnn::memory::primitive_desc& user_mpd,  // NOLINT
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
150 151
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((target_memory_p != nullptr) || (is_reusing_ == false),
                   "Fail to find mem primitive in device context");
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
      std::shared_ptr<mkldnn::primitive> reorder_p;
      if (mpd != user_mpd) {
        target_memory_p = std::make_shared<mkldnn::memory>(mpd);
165 166 167 168 169 170 171 172 173 174 175 176 177 178
        std::shared_ptr<mkldnn::reorder> reorder_p;
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

          auto reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(user_mpd, mpd, attri));
          reorder_p = std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(
              *reorder_pd, *user_memory_p, *target_memory_p));
        } else {
          reorder_p = std::make_shared<mkldnn::reorder>(*user_memory_p,
                                                        *target_memory_p);
        }
J
Jacek Czaja 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
        pipeline.push_back(*reorder_p);
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        pipeline.push_back(*reorder_p);
      }
      is_reusing_ = true;
    }
    return target_memory_p;
  }

  static std::string GetHash(mkldnn::memory::dims& operand_dims,  // NOLINT
                             const std::string& suffix) {
    return dims2str(operand_dims) + suffix;
  }

200
  template <typename T>
X
xiaoli.liu@intel.com 已提交
201 202 203 204 205
  static void SetDstMemory(
      const framework::ExecutionContext& ctx, framework::Tensor* output,
      std::vector<int> dst_tz, const mkldnn::engine& engine,
      std::shared_ptr<mkldnn::memory::primitive_desc>& dst_pd,  // NOLINT
      std::shared_ptr<mkldnn::memory>& dst_memory) {            // NOLINT
206
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
X
xiaoli.liu@intel.com 已提交
207 208
    auto dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, paddle::framework::ToMKLDNNDataType(
209
                      framework::DataTypeTrait<T>::DataType),
X
xiaoli.liu@intel.com 已提交
210 211
        mkldnn::memory::format::nhwc);
    dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine));
212 213 214
    dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast<T>(output_data)));
  }

215 216 217 218 219 220 221
  static void AppendKey(
      std::string* key, const mkldnn::memory::dims& input_dims,
      const mkldnn::memory::dims& weights_dims, const std::vector<int>& strides,
      const std::vector<int>& paddings, const std::vector<int>& dilations,
      const int& groups, const mkldnn::memory::data_type& srcdt,
      const mkldnn::memory::format& format, const bool& relu,
      const bool& residual, const bool& brelu, const std::string& suffix) {
222
    AppendKeyDims(key, input_dims);
223

224
    AppendKeyDims(key, weights_dims);
225

226
    AppendKeyVec(key, strides);
227

228
    AppendKeyVec(key, paddings);
229

230
    AppendKeyVec(key, dilations);
231

232
    AppendKey(key, std::to_string(groups));
X
xiaolil1 已提交
233
    AppendKey(key, std::to_string(srcdt));
234
    AppendKey(key, std::to_string(format));
X
xiaolil1 已提交
235 236
    AppendKey(key, std::to_string(relu));
    AppendKey(key, std::to_string(residual));
237
    AppendKey(key, std::to_string(brelu));
238
    AppendKey(key, suffix);
X
xiaoli.liu@intel.com 已提交
239 240
  }

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  static void AppendKeyDims(std::string* key,
                            const mkldnn::memory::dims& dims) {
    for (unsigned int i = 0; i < dims.size(); i++) {
      AppendKey(key, std::to_string(dims[i]));
    }
  }

  static void AppendKeyVec(std::string* key, const std::vector<int>& dims) {
    for (unsigned int i = 0; i < dims.size(); i++) {
      AppendKey(key, std::to_string(dims[i]));
    }
  }

  static void AppendKey(std::string* key, const std::string& s) {
    key->append(s);
  }

258
 protected:
J
Jacek Czaja 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
  static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
  bool is_reusing_;
272 273 274

 public:
  static constexpr int MaxKeyLength = 256;
J
Jacek Czaja 已提交
275 276
};

277 278
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
279 280
  TransposeMKLDNNHandler(std::vector<int>& dims,  // NOLINT
                         std::vector<int>& axis,  // NOLINT
281 282 283 284
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::format& fmt, void* ptr) {
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   " find mem primitive in device context");
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
      auto src_md = fmt != mkldnn::memory::format::nchw
                        ? platform::MKLDNNMemDesc(
                              dims_, platform::MKLDNNGetDataType<float>(), fmt)
                        : Axis2MemoryDesc(dims_, logical_axis_);
      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{src_md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }
316 317 318 319 320 321 322 323 324 325 326 327

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   " find mem primitive in device context");
    if (mem_p == nullptr) {
      auto dst_mdp = mkldnn::memory::primitive_desc{
          Axis2MemoryDesc(dims_, axis_), engine_};

328
      auto dst_data = output->mutable_data<float>(place, dst_mdp.get_size());
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

      mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data<float>(place);
      mem_p->set_data_handle(dst_data);
      // Mark that reusing happenned. All primitives from operator instance
      // should be reused or none of them. So we check consistency
      is_reusing_ = true;
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((transpose_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    } else {
      is_reusing_ = true;
    }
    return transpose_p;
  }

  static std::string GetHash(std::vector<int>& shape,  // NOLINT
                             std::vector<int>& axis,   // NOLINT
                             const std::string& suffix) {
    return dims2str(shape) + dims2str(axis) + suffix;
  }

 protected:
367 368 369
  mkldnn_memory_desc_t Axis2MemoryDesc(std::vector<int>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis      // NOLINT
                                       ) {
370 371 372 373 374 375
    mkldnn_memory_desc_t mem_fmt;

    mem_fmt.primitive_kind = mkldnn_memory;
    mem_fmt.ndims = axis.size();
    for (unsigned int i = 0; i < nchw_tz.size(); ++i) {
      mem_fmt.dims[i] = nchw_tz[i];  // logical dimensions (nchw format,
376
      // regardless physical layout)
377 378 379 380 381 382 383 384
    }
    mem_fmt.data_type = mkldnn_f32;
    mem_fmt.format = mkldnn_blocked;

    unsigned int total_stride = 1;
    for (int i = nchw_tz.size() - 1; i >= 0; --i) {
      mem_fmt.layout_desc.blocking.padding_dims[i] =
          nchw_tz[i];  // logical dimensions (nchw format, regardless physical
385
      // layout)
386 387 388 389 390 391 392 393 394 395 396 397 398
      mem_fmt.layout_desc.blocking.block_dims[i] = 1;
      mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0;  // no offset
      mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride;
      mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1;
      total_stride *= nchw_tz[axis[i]];
    }
    mem_fmt.layout_desc.blocking.offset_padding = 0;  // no initial offset
    return mem_fmt;
  }

 private:
  std::vector<int> dims_;
  std::vector<int> axis_;
399
  std::vector<int> logical_axis_;
400 401
};

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
  ReorderMKLDNNHandler(std::vector<int>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::format& fmt, void* ptr) {
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   " find mem primitive in device context");
    if (mem_p == nullptr) {
      auto src_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);
      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{src_md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
      is_reusing_ = true;
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      framework::Tensor* output, const mkldnn::memory::format& fmt,
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
                   " find mem primitive in device context");
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);
      auto dst_mdp = mkldnn::memory::primitive_desc{dst_md, engine_};

      auto dst_data = output->mutable_data(place, vtype_);

      mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
      is_reusing_ = true;
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((reorder_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    } else {
      is_reusing_ = true;
    }
    return reorder_p;
  }

  static std::string GetHash(std::vector<int>& shape,  // NOLINT
                             mkldnn::memory::format in_fmt,
                             mkldnn::memory::format out_fmt,
                             const std::string& suffix) {
    return dims2str(shape) + std::to_string(in_fmt) + "->" +
           std::to_string(out_fmt) + "#" + suffix;
  }

 private:
  std::vector<int> dims_;
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

489 490 491 492 493 494 495 496 497 498 499 500 501 502
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
503 504 505
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
506 507 508 509 510
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  // TODO(jczaja): remove after conv int8 is adapted
J
Jacek Czaja 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

  size_t GetDstMemorySize() const {
    return conv_pd_->dst_primitive_desc().get_size();
  }

  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }

  size_t GetDiffWeightsMemorySize() const {
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

  size_t GetDiffSourceMemorySize() const {
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
633 634
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
635 636
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
637 638 639
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
640 641 642 643
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
644 645 646 647
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
J
Jacek Czaja 已提交
648 649 650
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
651 652
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
653 654
  }

655 656 657
  mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
                                       bool fuse_brelu,
                                       float fuse_brelu_threshold) const {
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(1.0f);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
677 678 679 680 681 682 683 684

    if (fuse_brelu) {
      constexpr float scale = 1.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
                                     fuse_brelu_threshold, placeholder);
    }
685 686 687 688 689 690 691 692 693 694 695
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
      const mkldnn::memory::desc& dst, const std::vector<int>& strides,
      const std::vector<int>& paddings, const mkldnn::engine& engine,
      const bool fuse_relu, const bool fuse_residual_conn,
696
      const bool fuse_brelu, const float fuse_brelu_threshold,
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
      mkldnn::prop_kind fwd_prop_kind) {
    const std::string key_conv_pd = key_ + "@conv_pd";

    auto conv_pd = std::static_pointer_cast<typename forward_t::primitive_desc>(
        dev_ctx_.GetBlob(key_conv_pd));

    if (conv_pd == nullptr) {
      mkldnn::memory::dims stride_dims = strides;
      mkldnn::memory::dims padding_dims = paddings;

      auto conv_desc =
          bias ? typename forward_t::desc(
                     fwd_prop_kind, convolutional_algorithm<forward_t>::T, src,
                     weights, *bias, dst, stride_dims, padding_dims,
                     padding_dims, mkldnn::padding_kind::zero)
               : typename forward_t::desc(
                     fwd_prop_kind, convolutional_algorithm<forward_t>::T, src,
                     weights, dst, stride_dims, padding_dims, padding_dims,
                     mkldnn::padding_kind::zero);

717 718
      mkldnn::primitive_attr conv_attr = CreatePostOps(
          fuse_relu, fuse_residual_conn, fuse_brelu, fuse_brelu_threshold);
719 720 721 722 723 724 725 726 727 728 729 730 731

      conv_pd_.reset(
          new typename forward_t::primitive_desc(conv_desc, conv_attr, engine));
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
    } else {
      conv_pd_ = conv_pd;
      is_reusing_ = true;
    }

    return conv_pd_;
  }

J
Jacek Czaja 已提交
732 733 734 735 736 737 738 739 740 741
  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
742 743
      conv_p = std::make_shared<forward_t>(*conv_pd_, *src_memory_p,
                                           *weights_memory_p, *dst_memory_p);
J
Jacek Czaja 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
763 764 765
      conv_p = std::make_shared<forward_t>(*conv_pd_, *src_memory_p,
                                           *weights_memory_p, *bias_memory_p,
                                           *dst_memory_p);
J
Jacek Czaja 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p = std::make_shared<backward_weights_t>(
          *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
          *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<backward_data_t>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
  static std::string GetHash(mkldnn::memory::dims& input_dims,    // NOLINT
                             mkldnn::memory::dims& weights_dims,  // NOLINT
                             const bool& fuse_relu,               // NOLINT
                             const bool& fuse_brelu,              // NOLINT
                             std::vector<int>& strides,           // NOLINT
                             std::vector<int>& paddings,          // NOLINT
                             std::vector<int>& dilations,         // NOLINT
                             int groups, const std::string& suffix) {
    return dims2str(input_dims) + dims2str(weights_dims) +
           std::to_string(fuse_relu) + std::to_string(fuse_brelu) +
           dims2str(strides) + dims2str(paddings) + dims2str(dilations) +
           std::to_string(groups) + suffix;
  }

J
Jacek Czaja 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
  static std::string GetHash(mkldnn::memory::dims& input_dims,    // NOLINT
                             mkldnn::memory::dims& weights_dims,  // NOLINT
                             std::vector<int>& strides,           // NOLINT
                             std::vector<int>& paddings,          // NOLINT
                             std::vector<int>& dilations,         // NOLINT
                             int groups, const std::string& suffix) {
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
862 863 864 865 866

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
867 868
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
869 870 871 872 873 874
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
X
xiaolil1 已提交
875
static std::shared_ptr<mkldnn::memory> SetDstMemory(
876
    const framework::ExecutionContext& ctx, framework::Tensor* output,
X
xiaolil1 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
  PADDLE_ENFORCE(residual_param_data != nullptr,
                 "Provide data if you want MKLDNN conv+elementwise_add fusion");
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory>* dst_memory_p) {
899 900
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
X
xiaolil1 已提交
901
  (*dst_memory_p)->set_data_handle(to_void_cast<T>(output_data));
902
}
X
xiaolil1 已提交
903

J
Jacek Czaja 已提交
904 905
}  // namespace platform
}  // namespace paddle