未验证 提交 abfa8226 编写于 作者: J Jacek Czaja 提交者: GitHub

[oneDNN]Extended adaptive pooling support for oneDNN pool kernel (#30757)

上级 73cdea01
......@@ -28,6 +28,270 @@ using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
template <typename T>
class PoolingMKLDNNHandler
: public platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward> {
public:
PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
const platform::MKLDNNDeviceContext& dev_ctx,
platform::Place cpu_place, const Tensor* input,
Tensor* output, const std::string& unique_name)
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward>(
dev_ctx, dev_ctx.GetEngine(), cpu_place,
platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
framework::ToMKLDNNDataType(input->type()),
unique_name)) {
if (!this->isCached()) {
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument(
"Wrong layout set for Input tensor."));
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument(
"Wrong format set for Input tensor."));
const std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
const bool global_pooling = ctx.Attr<bool>("global_pooling");
const std::string padding_algorithm =
ctx.Attr<std::string>("padding_algorithm");
// Only 2D pooling is supported now
PADDLE_ENFORCE_EQ(
ksize.size(), 2,
platform::errors::InvalidArgument(
"The ksize must be 2D, i.e. 2D pooling, but received %dD.",
ksize.size()));
PADDLE_ENFORCE_EQ(
pooling_type == "max" || pooling_type == "avg", true,
platform::errors::InvalidArgument(
"The pooling_type must be 'max' or 'avg', but received %s.",
pooling_type));
PADDLE_ENFORCE_EQ(
input->dims().size(), 4,
platform::errors::InvalidArgument(
"Input dim must be with 4, i.e. NCHW, but received %d.",
input->dims().size()));
const auto input_dims = input->dims();
framework::DDim data_dims =
framework::slice_ddim(input_dims, 2, input_dims.size());
if (global_pooling) {
operators::UpdateKsize(&ksize, data_dims);
}
operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
data_dims, strides, ksize);
const auto src_tz = paddle::framework::vectorize(input->dims());
const auto dst_tz = paddle::framework::vectorize(output->dims());
const auto is_test = ctx.Attr<bool>("is_test");
const auto dt = framework::ToMKLDNNDataType(input->type());
const auto fmt = input->format();
const auto exclude_padding = ctx.Attr<bool>("exclusive");
const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
/* create memory descriptor for pooling without specified format
* ('any') which lets a primitive (pooling in this case) choose
* the memory format preferred for best performance
*/
const auto dst_md =
platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
if (ceil_mode) {
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
mkldnn_paddings[1]);
}
ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);
this->AcquireForwardPrimitiveDescriptor(
is_test ? mkldnn::prop_kind::forward_inference
: mkldnn::prop_kind::forward_training,
pooling_type == "max"
? mkldnn::algorithm::pooling_max
: (exclude_padding
? mkldnn::algorithm::pooling_avg_exclude_padding
: mkldnn::algorithm::pooling_avg_include_padding),
src_md, dst_md, strides, ksize, mkldnn_paddings[0],
mkldnn_paddings[1]);
}
}
PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
const platform::MKLDNNDeviceContext& dev_ctx,
platform::Place cpu_place, const Tensor* in_x,
const Tensor* out_grad, Tensor* in_x_grad,
const std::string& unique_name)
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward>(
dev_ctx, dev_ctx.GetEngine(), cpu_place,
platform::CreateKey(dev_ctx, framework::vectorize(in_x->dims()),
framework::ToMKLDNNDataType(in_x->type()),
unique_name)) {
if (!this->isBwdCached()) {
PADDLE_ENFORCE_EQ(in_x->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument(
"Wrong layout set for Input tensor"));
PADDLE_ENFORCE_NE(in_x->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument(
"Wrong format set for Input tensor"));
PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument(
"Wrong layout set for Input output_grad tensor"));
PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument(
"Wrong format set for Input output_grad tensor"));
PADDLE_ENFORCE_EQ(
ctx.Attr<bool>("is_test"), false,
platform::errors::InvalidArgument(
"is_test attribute should be set to False in training phase."));
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
bool global_pooling = ctx.Attr<bool>("global_pooling");
std::string padding_algorithm =
ctx.Attr<std::string>("padding_algorithm");
auto in_x_dims = in_x->dims();
framework::DDim data_dims =
framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
if (global_pooling) {
operators::UpdateKsize(&ksize, data_dims);
}
operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
data_dims, strides, ksize);
auto src_tz = paddle::framework::vectorize<int64_t>(in_x->dims());
auto diff_src_tz =
paddle::framework::vectorize<int64_t>(in_x_grad->dims());
auto diff_dst_tz =
paddle::framework::vectorize<int64_t>(out_grad->dims());
auto diff_dst_md = mkldnn::memory::desc(
diff_dst_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
auto diff_src_md =
mkldnn::memory::desc(diff_src_tz, platform::MKLDNNGetDataType<T>(),
MKLDNNMemoryFormat::any);
auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
if (ceil_mode) {
CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
mkldnn_paddings[1]);
}
ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);
const auto exclude_padding = ctx.Attr<bool>("exclusive");
this->AcquireBackwardPrimitiveDescriptor(
pooling_type == "max"
? mkldnn::algorithm::pooling_max
: (exclude_padding
? mkldnn::algorithm::pooling_avg_exclude_padding
: mkldnn::algorithm::pooling_avg_include_padding),
diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
mkldnn_paddings[1]);
}
}
std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
// Pooling PD has to be passed to Grad op that
// may be executed by diffrent thread, hence
// for that one we use key that does not contain TID
auto local_key = this->key_common_ + "@workspace";
auto mem_p = std::static_pointer_cast<mkldnn::memory>(
this->dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
static std::mutex acquire_barrier;
std::lock_guard<std::mutex> block_threads_until_finish_this_job(
acquire_barrier);
mem_p = std::static_pointer_cast<mkldnn::memory>(
this->dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
this->dev_ctx_.SetBlob(local_key, mem_p);
}
}
return mem_p;
}
static void ComputeAdaptivePoolParameters(
const paddle::framework::ExecutionContext& ctx,
const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
std::vector<int64_t>* strides) {
if (ctx.Attr<bool>("adaptive")) {
// https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
auto OH = static_cast<double>(ksize->at(0));
auto OW = static_cast<double>(ksize->at(1));
strides->at(0) =
static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
strides->at(1) =
static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
ksize->at(0) =
static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
ksize->at(1) =
static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
}
}
private:
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
int padding, int stride) {
return (input_size - kernel_size + 2 * padding) / stride + 1;
}
static inline void CorrectOutputSize(
const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
const std::vector<int64_t>& kernel_size,
const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
std::vector<int64_t>& right_bot_padding) { // NOLINT
for (size_t i = 0; i < right_bot_padding.size(); i++) {
int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
paddings[i], strides[i]);
if (desired_size != dst_tz[i + 2]) {
right_bot_padding[i] += strides[i] - 1;
}
}
}
};
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
......@@ -37,14 +301,12 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Operator DNNL Pool must use CPUPlace"));
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
const Tensor* input = ctx.Input<Tensor>("X");
Tensor* output = ctx.Output<Tensor>("Out");
platform::PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, mkldnn_engine,
ctx.GetPlace(), input, output,
ctx.OutputName("Out"));
PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, ctx.GetPlace(), input, output,
ctx.OutputName("Out"));
auto src_memory = handler.AcquireSrcMemory(input);
auto dst_memory = handler.AcquireDstMemory(output);
......@@ -82,72 +344,11 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
PADDLE_ENFORCE_EQ(
in_x->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
PADDLE_ENFORCE_NE(
in_x->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument("Wrong format set for Input tensor"));
PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument(
"Wrong layout set for Input output_grad tensor"));
PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument(
"Wrong format set for Input output_grad tensor"));
PADDLE_ENFORCE_EQ(
ctx.Attr<bool>("is_test"), false,
platform::errors::InvalidArgument(
"is_test attribute should be set to False in training phase."));
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
bool global_pooling = ctx.Attr<bool>("global_pooling");
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
auto in_x_dims = in_x->dims();
framework::DDim data_dims =
framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
if (global_pooling) {
UpdateKsize(&ksize, data_dims);
}
UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims,
strides, ksize);
platform::PoolingMKLDNNHandler<T>::ComputeAdaptivePoolParameters(
ctx, paddle::framework::vectorize(in_x->dims()), ksize, strides);
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
std::vector<mkldnn::primitive> pipeline;
auto diff_src_tz = paddle::framework::vectorize<int64_t>(in_x_grad->dims());
auto diff_dst_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());
// Get an unique name from "argument" name of "Out" variable
// This name will be used as key when referring info from device context
const std::string key = platform::CreateKey(
dev_ctx, diff_src_tz, pooling_type, ksize, strides, paddings,
memory::data_type::f32, in_x->format(), ctx.InputName("Out"));
platform::PoolingMKLDNNHandler<T> handler(
diff_dst_tz, diff_src_tz, ksize, strides, paddings, pooling_type,
ctx.Attr<bool>("ceil_mode"), in_x->format(), out_grad->format(),
paddle::framework::ToMKLDNNDataType(out_grad->type()), dev_ctx,
ctx.GetPlace(), ctx.InputName("Out"), ctx.Attr<bool>("exclusive"));
PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, ctx.GetPlace(), in_x,
out_grad, in_x_grad, ctx.InputName("Out"));
auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);
......@@ -155,7 +356,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto pool_bwd_p = handler.AcquireBackwardPrimitive();
auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
if (pooling_type == "max") {
if (ctx.Attr<std::string>("pooling_type") == "max") {
// Max - pooling needs Workspace
auto workspace_memory = handler.AcquireWorkspaceMemory();
pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
......
......@@ -144,6 +144,35 @@ void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
ctx->ShareLoD("X", "Out");
}
bool CanMKLDNNSupportPool(const framework::ExecutionContext& ctx) {
if (ctx.Attr<bool>("adaptive") == false) return true;
// (jczaja): oneDNN is supporting only unchangable in size pool window
auto src_tz = paddle::framework::vectorize(ctx.Input<Tensor>("X")->dims());
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
// Fast but not exhustive check
if ((src_tz[src_tz.size() - 1] % ksize[1] == 0) &&
(src_tz[src_tz.size() - 2] % ksize[0] == 0))
return true;
// Exhustive check
auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
auto OH = static_cast<double>(ksize[0]);
auto OW = static_cast<double>(ksize[1]);
auto SH = static_cast<int>(floor((IH * 2.0) / OH) - floor(IH / OH));
auto SW = static_cast<int>(floor((IW * 2.0) / OW) - floor(IW / OW));
auto KH = static_cast<int>(ceil((IH * 2.0) / OH) - floor(IH / OH));
auto KW = static_cast<int>(ceil((IW * 2.0) / OW) - floor(IW / OW));
auto PH = (SH * (static_cast<int>(OH) - 1) + KH - static_cast<int>(IH));
auto PW = (SW * (static_cast<int>(OW) - 1) + KW - static_cast<int>(IW));
// If there is additional padding needed then
// this is situation that oneDNN cannot comply with
// paddlepaddle reference implementation
return (PH == 0) && (PW == 0);
}
framework::OpKernelType PoolOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_{framework::LibraryType::kPlain};
......@@ -158,7 +187,7 @@ framework::OpKernelType PoolOp::GetExpectedKernelType(
#endif
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
this->CanMKLDNNBeUsed(ctx, data_type)) {
this->CanMKLDNNBeUsed(ctx, data_type) && CanMKLDNNSupportPool(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
......@@ -213,7 +242,8 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
#endif
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
this->CanMKLDNNBeUsed(ctx, input_data_type)) {
this->CanMKLDNNBeUsed(ctx, input_data_type) &&
CanMKLDNNSupportPool(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
layout_ = framework::DataLayout::kMKLDNN;
}
......
......@@ -120,6 +120,15 @@ class MKLDNNHandlerT {
return (dev_ctx_.GetBlob(key_p) != nullptr);
}
bool isBwdCached() {
const std::string key_pd = key_common_ + "@bwd_pd";
bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
dev_ctx_.GetBlob(key_pd));
const std::string key_p = key_ + "@bwd_p";
return (dev_ctx_.GetBlob(key_p) != nullptr);
}
// If your primitive descriptor requires attributes, pass them as a
// first argument and paramters to descriptor constructor in the following
// arguments. Otherwise, all arguments will be forwarded to descriptor
......@@ -735,210 +744,6 @@ class LRNMKLDNNHandler
}
};
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward> {
public:
PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
const MKLDNNDeviceContext& dev_ctx,
const mkldnn::engine mkldnn_engine,
platform::Place cpu_place, const Tensor* input,
Tensor* output, const std::string& unique_name)
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward>(
dev_ctx, dev_ctx.GetEngine(), cpu_place,
platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
framework::ToMKLDNNDataType(input->type()),
unique_name)) {
if (!this->isCached()) {
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument(
"Wrong layout set for Input tensor."));
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument(
"Wrong format set for Input tensor."));
const std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
const bool global_pooling = ctx.Attr<bool>("global_pooling");
const std::string padding_algorithm =
ctx.Attr<std::string>("padding_algorithm");
// Only 2D pooling is supported now
PADDLE_ENFORCE_EQ(
ksize.size(), 2,
platform::errors::InvalidArgument(
"The ksize must be 2D, i.e. 2D pooling, but received %dD.",
ksize.size()));
PADDLE_ENFORCE_EQ(
pooling_type == "max" || pooling_type == "avg", true,
platform::errors::InvalidArgument(
"The pooling_type must be 'max' or 'avg', but received %s.",
pooling_type));
PADDLE_ENFORCE_EQ(
input->dims().size(), 4,
platform::errors::InvalidArgument(
"Input dim must be with 4, i.e. NCHW, but received %d.",
input->dims().size()));
const auto input_dims = input->dims();
framework::DDim data_dims =
framework::slice_ddim(input_dims, 2, input_dims.size());
if (global_pooling) {
operators::UpdateKsize(&ksize, data_dims);
}
operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
data_dims, strides, ksize);
const auto src_tz = paddle::framework::vectorize(input->dims());
const auto dst_tz = paddle::framework::vectorize(output->dims());
const auto is_test = ctx.Attr<bool>("is_test");
const auto dt = framework::ToMKLDNNDataType(input->type());
const auto fmt = input->format();
const auto exclude_padding = ctx.Attr<bool>("exclusive");
const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
/* create memory descriptor for pooling without specified format
* ('any') which lets a primitive (pooling in this case) choose
* the memory format preferred for best performance
*/
const auto dst_md =
platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
auto mkldnn_paddings = ToMkldnnPadding(paddings);
const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
if (ceil_mode) {
CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
mkldnn_paddings[1]);
}
ComputeAdaptivePoolParameters(ctx, src_tz, ksize, strides);
this->AcquireForwardPrimitiveDescriptor(
is_test ? mkldnn::prop_kind::forward_inference
: mkldnn::prop_kind::forward_training,
pooling_type == "max"
? mkldnn::algorithm::pooling_max
: (exclude_padding
? mkldnn::algorithm::pooling_avg_exclude_padding
: mkldnn::algorithm::pooling_avg_include_padding),
src_md, dst_md, strides, ksize, mkldnn_paddings[0],
mkldnn_paddings[1]);
}
}
PoolingMKLDNNHandler(
const std::vector<int64_t>& diff_dst_dims,
const std::vector<int64_t>& diff_src_dims,
const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
const std::vector<int64_t>& paddings, const std::string& pooling_type,
bool ceil_mode, const MKLDNNMemoryFormat fmt,
const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
const std::string& unique_name, bool exclude_padding)
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward>(
dev_ctx, dev_ctx.GetEngine(), cpu_place,
platform::CreateKey(dev_ctx, diff_src_dims, dt, unique_name)) {
auto diff_dst_md = mkldnn::memory::desc(
diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
auto diff_src_md =
mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
MKLDNNMemoryFormat::any);
auto mkldnn_paddings = ToMkldnnPadding(paddings);
this->AcquireBackwardPrimitiveDescriptor(
pooling_type == "max"
? mkldnn::algorithm::pooling_max
: (exclude_padding
? mkldnn::algorithm::pooling_avg_exclude_padding
: mkldnn::algorithm::pooling_avg_include_padding),
diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
mkldnn_paddings[1]);
}
std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
// Pooling PD has to be passed to Grad op that
// may be executed by diffrent thread, hence
// for that one we use key that does not contain TID
auto local_key = this->key_common_ + "@workspace";
auto mem_p = std::static_pointer_cast<mkldnn::memory>(
this->dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
static std::mutex acquire_barrier;
std::lock_guard<std::mutex> block_threads_until_finish_this_job(
acquire_barrier);
mem_p = std::static_pointer_cast<mkldnn::memory>(
this->dev_ctx_.GetBlob(local_key));
if (mem_p == nullptr) {
mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
this->dev_ctx_.SetBlob(local_key, mem_p);
}
}
return mem_p;
}
static void ComputeAdaptivePoolParameters(
const paddle::framework::ExecutionContext& ctx,
const std::vector<int64_t>& src_tz, std::vector<int64_t>& ksize,
std::vector<int64_t>& strides) {
if (ctx.Attr<bool>("adaptive")) {
// (jczaja): oneDNN is supporting only unchangable in size pool window
PADDLE_ENFORCE_EQ(
src_tz[src_tz.size() - 1] % ksize[1], 0,
platform::errors::Unimplemented(
"Input dim must be divisible by corressponding ksize dim."));
PADDLE_ENFORCE_EQ(
src_tz[src_tz.size() - 2] % ksize[0], 0,
platform::errors::Unimplemented(
"Input dim must be divisible by corressponding ksize dim."));
ksize[0] = src_tz[src_tz.size() - 2] / ksize[0];
ksize[1] = src_tz[src_tz.size() - 1] / ksize[1];
strides[0] = ksize[0];
strides[1] = ksize[1];
}
}
private:
static inline int ComputeCeiledOutput(int input_size, int kernel_size,
int padding, int stride) {
return (input_size - kernel_size + 2 * padding) / stride + 1;
}
static inline void CorrectOutputSize(
const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
const std::vector<int64_t>& kernel_size,
const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
std::vector<int64_t>& right_bot_padding) { // NOLINT
for (size_t i = 0; i < right_bot_padding.size(); i++) {
int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
paddings[i], strides[i]);
if (desired_size != dst_tz[i + 2]) {
right_bot_padding[i] += strides[i] - 1;
}
}
}
};
template <typename T>
class TransposeMKLDNNHandler : public MKLDNNHandler {
public:
......
......@@ -92,6 +92,15 @@ class TestAvgPoolAdaptive2(TestAvgPoolAdaptive):
self.shape = [2, 3, 6, 6]
class TestAvgPoolAdaptive3(TestAvgPoolAdaptive):
def init_test_case(self):
self.ksize = [3, 3]
self.strides = [1, 1]
def init_shape(self):
self.shape = [1, 3, 16, 16]
class TestAsymPad(TestPool2D_Op):
def init_test_case(self):
self.ksize = [3, 3]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册