/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "boost/optional.hpp" #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/operators/pool_op.h" #include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace platform { using framework::DataLayout; using framework::Tensor; using user_function = std::function(const float*)>; using memory = mkldnn::memory; template class MKLDNNHandlerT { public: MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, platform::Place cpu_place, const std::string& base_key) : dev_ctx_(dev_ctx), engine_(engine), place_(cpu_place), key_common_(base_key), key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)), fwd_pd_(nullptr), bwd_pd_(nullptr) { platform::MKLDNNDeviceContext::tls().log_lib_version(); } std::shared_ptr AcquireForwardPrimitive() { const std::string key_p = key_ + "@fwd_p"; auto forward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (forward_p == nullptr) { forward_p = std::make_shared(*fwd_pd_); dev_ctx_.SetBlob(key_p, forward_p); } return forward_p; } std::shared_ptr AcquireBackwardPrimitive() { const std::string key_p = key_ + "@bwd_p"; auto backward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (backward_p == nullptr) { backward_p = std::make_shared(*bwd_pd_); dev_ctx_.SetBlob(key_p, backward_p); } return backward_p; } std::shared_ptr AcquireBackwardWeightsPrimitive() { const std::string key_p = key_ + "@bwd_w_p"; auto backward_p = std::static_pointer_cast(dev_ctx_.GetBlob(key_p)); if (backward_p == nullptr) { PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable( "Error: BWD_PD should be set when " "getting BWD prim witk key: %s .", key_p)); backward_p = std::make_shared(*bwd_w_pd_); dev_ctx_.SetBlob(key_p, backward_p); } return backward_p; } std::shared_ptr AcquireSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive( fwd_pd_->src_desc(), to_void_cast(input_data), "@src_mem_p"); } template std::shared_ptr AcquireDstMemory(framework::Tensor* output) { T_out* ptr = output->mutable_data(place_, fwd_pd_->dst_desc().get_size()); return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr, "@dst_mem_p"); } template std::shared_ptr AcquireDstMemory(void) { return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p"); } template std::shared_ptr AcquireDstMemory( const framework::Tensor* output) { const T_out* output_data = output->data(); return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(), to_void_cast(output_data), "@bwd-dst_mem_p"); } std::shared_ptr AcquireDiffDstMemory( const framework::Tensor* diffdst) { const T* ptr = diffdst->data(); return this->AcquireMemoryFromPrimitive( bwd_pd_->diff_dst_desc(), to_void_cast(ptr), "@diff_dst_mem_p"); } std::shared_ptr AcquireDiffSrcMemory( framework::Tensor* diffsrc) { T* ptr = diffsrc->mutable_data(place_, bwd_pd_->diff_src_desc().get_size()); return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr, "@diff_src_mem_p"); } // Buffer of given Tensor is used for oneDNN computation std::shared_ptr AcquireDiffWeightsMemory( framework::Tensor* diff_weights) { PADDLE_ENFORCE_NOT_NULL( bwd_w_pd_, platform::errors::Unavailable( "Error: BWD_W_PD should be set when getting BWD grad of weights.")); T* ptr = diff_weights->mutable_data( place_, bwd_w_pd_->diff_weights_desc().get_size()); return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr, "@diff_wei_mem_p"); } // Buffer is allocated by oneDNN to store computation results std::shared_ptr AcquireDiffWeightsMemory(void) { PADDLE_ENFORCE_NOT_NULL( bwd_w_pd_, platform::errors::Unavailable( "Error: BWD_W_PD should be set when getting BWD grad of weights.")); return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), "@diff_wei_mem_p"); } protected: bool isCached() { const std::string key_pd = key_ + "@fwd_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); return (fwd_pd_ != nullptr); } bool isBwdCached() { const std::string key_pd = key_ + "@bwd_pd"; bwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (bwd_pd_ == nullptr) { return false; } else { // When BWD is cached then still we need to Get FWD PD const std::string key_fpd = key_ + "@fwd_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_fpd)); PADDLE_ENFORCE_NOT_NULL( fwd_pd_, platform::errors::Unavailable( "Error: FWD PD should be set when BWD PD is cached.")); return true; } } // If your primitive descriptor requires attributes, pass them as a // first argument and paramters to descriptor constructor in the following // arguments. Otherwise, all arguments will be forwarded to descriptor // constructor, including the first one. template void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) { // This is used when we can recreate FWD PD in BWD so // we do not need to pass FWD to BWD const std::string key_pd = key_ + "@fwd_pd"; fwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (fwd_pd_ == nullptr) { CreateForwardPrimitiveDescriptor(first_arg, std::forward(args)...); dev_ctx_.SetBlob(key_pd, fwd_pd_); } } // Using sfinae to specialise variadic function. Workaround for not having // if constexpr in C++ 11. template typename std::enable_if::type, dnnl::primitive_attr>::value>::type CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) { auto fwd_desc = typename TForward::desc(std::forward(args)...); fwd_pd_ = std::make_shared( fwd_desc, first, engine_); } template typename std::enable_if::type, dnnl::primitive_attr>::value>::type CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) { auto fwd_desc = typename TForward::desc(std::forward(first), std::forward(args)...); fwd_pd_ = std::make_shared(fwd_desc, engine_); } template void AcquireBackwardPrimitiveDescriptor(Args&&... args) { // fwd_pd_ is set during grad by calling // AcquireForwardPrimitiveDescriptor PADDLE_ENFORCE_NOT_NULL( fwd_pd_, platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.", key_ + "@fwd_pd")); const std::string key_pd = key_ + "@bwd_pd"; bwd_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (bwd_pd_ == nullptr) { auto bwd_desc = typename TBackward::desc(std::forward(args)...); bwd_pd_ = std::make_shared( bwd_desc, engine_, *fwd_pd_); dev_ctx_.SetBlob(key_pd, bwd_pd_); } } template void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) { // fwd_pd_ is set during grad by calling // AcquireForwardPrimitiveDescriptor PADDLE_ENFORCE_NOT_NULL( fwd_pd_, platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.", key_ + "@fwd_pd")); const std::string key_pd = key_ + "@bwd_w_pd"; bwd_w_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_pd)); if (bwd_w_pd_ == nullptr) { auto bwd_desc = typename TBackward_params::desc(std::forward(args)...); bwd_w_pd_ = std::make_shared( bwd_desc, engine_, *fwd_pd_); dev_ctx_.SetBlob(key_pd, bwd_w_pd_); } } std::shared_ptr AcquireMemoryFromPrimitive( const std::string& suffix) { return std::static_pointer_cast( dev_ctx_.GetBlob(key_ + suffix)); } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::desc md, void* ptr, const std::string& suffix) { const auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::desc md, const std::string& suffix) { const auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_); dev_ctx_.SetBlob(local_key, mem_p); } return mem_p; } void AcquireReorder(const std::shared_ptr& user_memory_p, const std::shared_ptr& target_memory_p, const std::string& suffix) { const auto key_reorder_p = key_ + suffix + "reorder_p"; auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (reorder_p == nullptr) { reorder_p = std::make_shared(*user_memory_p, *target_memory_p); dev_ctx_.SetBlob(key_reorder_p, reorder_p); } auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); platform::RecordEvent record_reorder("int_reorder", platform::EventRole::kUniqueOp); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } template std::shared_ptr AcquireMemoryWithReorder( const mkldnn::memory::desc& user_md, const mkldnn::memory::desc& target_md, void* ptr, const std::string& suffix, bool is_persistent = false, std::function(const F*)> custom_reorder_func = {}) { const auto target_key = key_ + suffix + "_target"; const auto key_reorder_p = key_ + suffix + "reorder_p"; const auto user_key = key_ + suffix + "_user"; auto target_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(target_key)); if (target_memory_p == nullptr) { if (custom_reorder_func) { auto reordered_data = custom_reorder_func(reinterpret_cast(ptr)); dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data); ptr = reinterpret_cast(reordered_data.get()); } auto user_memory_p = std::make_shared(user_md, engine_, ptr); if (user_md != target_md) { target_memory_p = std::make_shared(target_md, engine_); auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); dev_ctx_.SetBlob(key_reorder_p, reorder_p); auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); platform::RecordEvent record_reorder("int_reorder", platform::EventRole::kUniqueOp); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } else { target_memory_p = user_memory_p; } dev_ctx_.SetBlob(user_key, user_memory_p); dev_ctx_.SetBlob(target_key, target_memory_p); } else if (!is_persistent) { auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); auto user_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(user_key)); user_memory_p->set_data_handle(ptr); auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (reorder_p != nullptr) { platform::RecordEvent record_reorder("int_reorder", platform::EventRole::kUniqueOp); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } } return target_memory_p; } std::shared_ptr AcquireMemory(const std::string& suffix) { const auto local_key = key_ + suffix; return std::static_pointer_cast( dev_ctx_.GetBlob(local_key)); } const MKLDNNDeviceContext& dev_ctx_; mkldnn::engine engine_; platform::Place place_; std::string key_common_; std::string key_; std::shared_ptr fwd_pd_; std::shared_ptr bwd_pd_; std::shared_ptr bwd_w_pd_; }; // TODO(grygielski) this class will be deleted later. class MKLDNNHandler { public: MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key), key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)) { platform::MKLDNNDeviceContext::tls().log_lib_version(); } std::shared_ptr AcquireSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_src_mem_p"); } std::shared_ptr AcquireDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_dst_mem_p"); } std::shared_ptr AcquireDiffSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p"); } std::shared_ptr AcquireDiffDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p"); } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::desc md, void* ptr, const std::string& suffix) { auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::desc md, const std::string& suffix) { const auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(md, engine_); dev_ctx_.SetBlob(local_key, mem_p); } return mem_p; } // This incarnation of AcquireMemory can call user function eg. custom reorder // or preprocessing routine if needed std::shared_ptr AcquireMemory( const mkldnn::memory::desc& md, void* ptr, const std::string& suffix, user_function custom_func = {}) { /*Generate key*/ auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { // Call custom reorder/preprocessing func if available if (custom_func) { auto reordered_data = custom_func(reinterpret_cast(ptr)); dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data); ptr = reinterpret_cast(reordered_data.get()); } mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemory( const std::vector& dims, const mkldnn::memory::data_type dtype, const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) { /*Generate key*/ auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto md = mkldnn::memory::desc(dims, dtype, fmt); mem_p = std::make_shared(md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemory( const std::shared_ptr& user_memory_p, const std::shared_ptr& target_memory_p, const std::string& suffix, std::vector& pipeline) { // NOLINT auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto stored_reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (stored_reorder_p) { pipeline.push_back(*stored_reorder_p); } else { auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); dev_ctx_.SetBlob(key_reorder_p, reorder_p); auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); platform::RecordEvent record_reorder("int_reorder", platform::EventRole::kUniqueOp); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } return target_memory_p; } std::shared_ptr AcquireMemory( mkldnn::memory::desc& md, // NOLINT mkldnn::memory::desc& user_md, // NOLINT const std::shared_ptr user_memory_p, const std::string& suffix, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // create reorder primitive if the input format is not the preferred one auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto target_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); if (target_memory_p == nullptr) { target_memory_p = user_memory_p; if (md != user_md) { target_memory_p = std::make_shared(md, engine_); std::shared_ptr reorder_pd; if (is_INT8) { mkldnn::primitive_attr attri; // attribute for int8 weights and bias data reorder. attri.set_output_scales(mask, scale_data); reorder_pd = std::shared_ptr( new mkldnn::reorder::primitive_desc(*user_memory_p, *target_memory_p, attri)); } else { reorder_pd = std::shared_ptr( new mkldnn::reorder::primitive_desc(*user_memory_p, *target_memory_p)); } auto reorder_p = std::shared_ptr(new mkldnn::reorder(*reorder_pd)); dev_ctx_.SetBlob(key_reorder_p, reorder_p); platform::RecordEvent record_reorder("int_reorder", platform::EventRole::kUniqueOp); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } dev_ctx_.SetBlob(local_key, target_memory_p); } else if (!is_persistent) { // Make reorder if needed auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (reorder_p != nullptr) { platform::RecordEvent record_reorder("int_reorder", platform::EventRole::kUniqueOp); reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p}, {MKLDNN_ARG_TO, *target_memory_p}}); astream.wait(); } } return target_memory_p; } protected: const MKLDNNDeviceContext& dev_ctx_; mkldnn::engine engine_; std::string key_common_; std::string key_; }; template class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT { public: BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis, const MKLDNNDeviceContext& dev_ctx, const mkldnn::engine engine, platform::Place cpu_place, const Tensor* x, const Tensor* y, Tensor* z, float scale_x, float scale_y, float scale_z, const std::string& uniq_name) : platform::MKLDNNHandlerT( dev_ctx, engine, cpu_place, platform::CreateKey(dev_ctx, framework::vectorize(x->dims()), uniq_name)) { if (!this->isCached()) { PADDLE_ENFORCE_EQ( x->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for X tensor.")); PADDLE_ENFORCE_NE( x->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for X tensor.")); PADDLE_ENFORCE_EQ( y->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for Y tensor.")); PADDLE_ENFORCE_NE( y->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for Y tensor.")); const auto src_x_tz = framework::vectorize(x->dims()); const auto src_y_tz = framework::vectorize(y->dims()); // if output tensor(z) is nullptr then we are computing into oneDNN // managed buffer auto rankdiff = x->dims().size() - y->dims().size(); const auto dst_tz = (z == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz) : framework::vectorize(z->dims()); auto src0_md = dnnl::memory::desc( src_x_tz, platform::MKLDNNGetDataType(), x->format()); auto src1_md = dnnl::memory::desc( src_y_tz, platform::MKLDNNGetDataType(), y->format()); if (rankdiff > 0) { // Second input is of smaller rank than first std::vector dims1_ex(rankdiff, 1); dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)), src_y_tz.begin(), src_y_tz.end()); src1_md = src1_md.reshape(dims1_ex); } else if (rankdiff < 0) { // First input is of smaller than second std::vector dims0_ex(-rankdiff, 1); dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)), src_x_tz.begin(), src_x_tz.end()); src0_md = src0_md.reshape(dims0_ex); } const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType(), MKLDNNMemoryFormat::any); auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z); this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md, dst_md); } } std::shared_ptr AcquireSecondSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive( this->fwd_pd_->src1_desc(), to_void_cast(input_data), "@src1_mem_p"); } private: static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op, float scale_x, float scale_y, float scale_z) { // Scales set in attributes for inputs contibute to the output equation // in the following way (assuming no broadcasting takes place): // output_i = scale_0 * x_i <+ or *> scale_1 * y_i; // Hence we have to create scales that will: // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y) // 2. Quantize their result to output scale range, by multiplying with // (scale_z) // If we combine these two, we end up with following equation // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y) // Hence, to mimic such behaviour using provided interface, // For add operation the equation is equal to: // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y // // For mul operation on the other hand // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y // float scale_0 = scale_z / scale_x; float scale_1 = op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y; dnnl::primitive_attr attributes; attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0, {scale_0}); attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0, {scale_1}); return attributes; } }; template class BroadcastDataMKLDNNHandler : public platform::MKLDNNHandlerT { public: BroadcastDataMKLDNNHandler(const dnnl::algorithm algo, const MKLDNNDeviceContext& dev_ctx, const mkldnn::engine engine, platform::Place cpu_place, const Tensor* x, const Tensor* y, float scale_x, float scale_y, const std::string& uniq_name, const std::vector& input_dims) : platform::MKLDNNHandlerT( dev_ctx, engine, cpu_place, platform::CreateKey(dev_ctx, framework::vectorize(x->dims()), uniq_name)) { if (!this->isCached()) { PADDLE_ENFORCE_EQ( x->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for X tensor.")); PADDLE_ENFORCE_NE( x->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for X tensor.")); PADDLE_ENFORCE_EQ( y->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for Y tensor.")); PADDLE_ENFORCE_NE( y->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for Y tensor.")); const auto src0_tz = framework::vectorize(x->dims()); const auto src0_md = dnnl::memory::desc( src0_tz, platform::MKLDNNGetDataType(), x->format()); const auto src1_md = dnnl::memory::desc( input_dims, platform::MKLDNNGetDataType(), x->format()); dnnl::primitive_attr attributes; attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x}); attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y}); this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md, src0_md); } } std::shared_ptr AcquireSrcMemory(framework::Tensor* input) { T* input_data = input->data(); memset(input_data, 0, this->fwd_pd_->src_desc().get_size()); return this->AcquireMemoryFromPrimitive( this->fwd_pd_->src_desc(), to_void_cast(input_data), "@src0_mem_p"); } std::shared_ptr AcquireSecondSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive( this->fwd_pd_->src1_desc(), to_void_cast(input_data), "@src1_mem_p"); } }; template class ReductionMKLDNNHandler : public platform::MKLDNNHandlerT { public: ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p, const float eps, const MKLDNNDeviceContext& dev_ctx, const mkldnn::engine engine, platform::Place cpu_place, const Tensor* x, const Tensor* y, const std::string& uniq_name, std::vector y_tz) : platform::MKLDNNHandlerT( dev_ctx, engine, cpu_place, platform::CreateKey(dev_ctx, framework::vectorize(x->dims()), uniq_name, (std::to_string(static_cast(algo))))) { if (!this->isCached()) { PADDLE_ENFORCE_EQ( x->layout(), DataLayout::kMKLDNN, platform::errors::InvalidArgument("Wrong layout set for X tensor.")); PADDLE_ENFORCE_NE( x->format(), MKLDNNMemoryFormat::undef, platform::errors::InvalidArgument("Wrong format set for X tensor.")); const auto x_tz = framework::vectorize(x->dims()); const auto x_md = dnnl::memory::desc( x_tz, platform::MKLDNNGetDataType(), x->format()); const auto y_md = memory::desc(y_tz, platform::MKLDNNGetDataType(), x->format()); this->AcquireForwardPrimitiveDescriptor(algo, x_md, y_md, p, eps); } } }; template class ActivationMKLDNNHandler : public MKLDNNHandlerT { public: ActivationMKLDNNHandler(mkldnn::algorithm algorithm, const framework::ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx, Place cpu_place, const framework::Tensor* in_x, const std::string& unique_name, bool is_inplaced) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, is_inplaced ? platform::CreateKey( dev_ctx, framework::vectorize(in_x->dims()), "a", algorithm, unique_name) : platform::CreateKey( dev_ctx, framework::vectorize(in_x->dims()), "a", unique_name)) { if (!this->isCached()) { float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 0; float beta = ctx.HasAttr("beta") ? ctx.Attr("beta") : 0; // eltwise_linear means we are in scale op if (algorithm == mkldnn::algorithm::eltwise_linear) { bool bias_after_scale = ctx.Attr("bias_after_scale"); auto* scale_tensor = ctx.Input("ScaleTensor"); alpha = (scale_tensor == nullptr) ? ctx.Attr("scale") : (float)*(scale_tensor->data()); beta = ctx.Attr("bias"); // if bias_after_scale == true // out = scale*X + bias // else // out = scale*(X + bias) = scale*X + scale*bias if (!bias_after_scale) beta *= alpha; } else { // paddle uses beta but mkldnn uses alpha for swish if (algorithm == mkldnn::algorithm::eltwise_swish) { std::swap(alpha, beta); } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) { alpha = ctx.Attr("threshold"); } } PADDLE_ENFORCE(in_x->dims().size() >= 1 || in_x->dims().size() <= 6, platform::errors::Unimplemented( "Input dimension size can be 1, 2, 3, 4, " "5, or 6, but now the dimension size is", in_x->dims().size())); auto src_tz = framework::vectorize(in_x->dims()); auto src_fmt = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format(); auto md = mkldnn::memory::desc(src_tz, platform::MKLDNNGetDataType(), src_fmt); this->AcquireForwardPrimitiveDescriptor( mkldnn::prop_kind::forward_training, algorithm, md, alpha, beta); } } ActivationMKLDNNHandler(mkldnn::algorithm algorithm, const framework::ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx, Place cpu_place, const framework::Tensor* in_x, const Tensor* out_grad, const std::string& unique_name) : platform::MKLDNNHandlerT( dev_ctx, dev_ctx.GetEngine(), cpu_place, platform::CreateKey(dev_ctx, framework::vectorize(in_x->dims()), "a", unique_name)) { if (!this->isBwdCached()) { float alpha = ctx.HasAttr("alpha") ? ctx.Attr("alpha") : 0; float beta = ctx.HasAttr("beta") ? ctx.Attr("beta") : 0; // paddle uses beta but mkldnn uses alpha for swish if (algorithm == mkldnn::algorithm::eltwise_swish) { std::swap(alpha, beta); } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) { alpha = ctx.Attr("threshold"); } auto diff_dst_tz = framework::vectorize(out_grad->dims()); auto src_fmt = diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format(); auto diff_fmt = diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : out_grad->format(); auto dims = framework::vectorize(in_x->dims()); auto diff_dst_md = platform::MKLDNNMemDesc( dims, platform::MKLDNNGetDataType(), diff_fmt); auto src_md = platform::MKLDNNMemDesc( dims, platform::MKLDNNGetDataType(), src_fmt); this->AcquireForwardPrimitiveDescriptor( mkldnn::prop_kind::forward_training, algorithm, src_md, alpha, beta); this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md, alpha, beta); } } std::shared_ptr AcquireBackwardSrcMemory( const framework::Tensor* input) { const T* input_data = input->data(); return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(), to_void_cast(input_data), "@bwd-src_mem_p"); } }; template class TransposeMKLDNNHandler : public MKLDNNHandler { public: TransposeMKLDNNHandler(std::vector& dims, // NOLINT std::vector& axis, // NOLINT const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), axis_(axis), logical_axis_(dims.size(), 0) {} std::shared_ptr AcquireSrcMemory( const MKLDNNMemoryFormat& fmt, void* ptr) { auto local_key = key_ + "@user_src_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { // Make memory descriptor using input format, unless it // cannot be trusted (nchw) then make up memory fmt manually for (size_t i = 0; i < logical_axis_.size(); ++i) { logical_axis_[i] = i; } auto src_md = fmt != MKLDNNMemoryFormat::nchw ? platform::MKLDNNMemDesc( dims_, platform::MKLDNNGetDataType(), fmt) : Axis2MemoryDesc(dims_, logical_axis_); mem_p = std::make_shared(src_md, engine_, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireDstMemory(framework::Tensor* output, platform::Place place) { auto local_key = key_ + "@user_dst_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto dst_md = Axis2MemoryDesc(dims_, axis_); auto dst_data = output->mutable_data(place, dst_md.get_size()); mem_p = std::make_shared(dst_md, engine_, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { auto dst_data = output->mutable_data(place); mem_p->set_data_handle(dst_data); } return mem_p; } std::shared_ptr AcquireTranspose( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { auto prim_key = key_ + "@transpose_p"; auto transpose_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (transpose_p == nullptr) { transpose_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, transpose_p); } return transpose_p; } protected: mkldnn::memory::desc Axis2MemoryDesc(std::vector& nchw_tz, // NOLINT std::vector& axis // NOLINT ) { size_t ndims = axis.size(); std::vector strides(ndims); unsigned int total_stride = 1; for (int i = ndims - 1; i >= 0; --i) { strides[axis[i]] = total_stride; total_stride *= nchw_tz[axis[i]]; } mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType(), strides); return mem_d; } private: std::vector dims_; std::vector axis_; std::vector logical_axis_; }; class ReorderMKLDNNHandler : public MKLDNNHandler { public: ReorderMKLDNNHandler(std::vector& dims, // NOLINT framework::proto::VarType::Type vtype, mkldnn::memory::data_type dtype, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), vtype_(vtype), vtype_dst_(vtype), dtype_(dtype), dtype_dst_(dtype) {} ReorderMKLDNNHandler(std::vector& dims, // NOLINT framework::proto::VarType::Type vtype, mkldnn::memory::data_type dtype, framework::proto::VarType::Type vtype_dst, mkldnn::memory::data_type dtype_dst, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), vtype_(vtype), vtype_dst_(vtype_dst), dtype_(dtype), dtype_dst_(dtype_dst) {} std::shared_ptr AcquireSrcMemory( const MKLDNNMemoryFormat& fmt, void* ptr) { return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p"); } std::shared_ptr AcquireSrcSubmemory( const std::vector& dims, const std::vector& offset, const std::shared_ptr& mem_p, int submemory_number) { std::string local_key = key_; local_key.append("@submem") .append(std::to_string(submemory_number)) .append("_p"); auto sub_mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (sub_mem_p == nullptr) { auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset}); sub_mem_p = std::make_shared(sub_md, engine_, mem_p->get_data_handle()); dev_ctx_.SetBlob(local_key, sub_mem_p); } else { sub_mem_p->set_data_handle(mem_p->get_data_handle()); } return sub_mem_p; } std::shared_ptr AcquireDstMemory( framework::Tensor* output, const MKLDNNMemoryFormat& fmt, platform::Place place) { auto local_key = key_ + "@user_dst_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt); auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size()); mem_p = std::make_shared(dst_md, engine_, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { // Even if memory object exists , we may be using it for diffrent tensor auto dst_data = output->mutable_data(place, vtype_dst_, mem_p->get_desc().get_size()); mem_p->set_data_handle(dst_data); } return mem_p; } std::shared_ptr AcquireDstMemory( framework::Tensor* output, const std::vector& dims, const int memory_number, const MKLDNNMemoryFormat& fmt, platform::Place place) { auto local_key = key_ + "@user_dst_mem" + std::to_string(memory_number) + "_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt); auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size()); mem_p = std::make_shared(dst_md, engine_, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { // Even if memory object exists , we may be using it for diffrent tensor auto dst_data = output->mutable_data(place, vtype_dst_, mem_p->get_desc().get_size()); mem_p->set_data_handle(dst_data); } return mem_p; } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p, int reorder_number) { auto prim_key = key_ + "@reorder" + std::to_string(reorder_number) + "_p"; auto reorder_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (reorder_p == nullptr) { reorder_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, reorder_p); } return reorder_p; } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { auto prim_key = key_ + "@reorder_p"; auto reorder_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (reorder_p == nullptr) { reorder_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, reorder_p); } return reorder_p; } private: std::vector dims_; framework::proto::VarType::Type vtype_, vtype_dst_; mkldnn::memory::data_type dtype_, dtype_dst_; }; template struct convolutional_algorithm; template <> struct convolutional_algorithm { static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct; }; template <> struct convolutional_algorithm { static constexpr mkldnn::algorithm T = mkldnn::algorithm::deconvolution_direct; }; template class ConvMKLDNNTemplateHandler : public MKLDNNHandler { public: ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) {} // TODO(jczaja): remove after conv int8 is adapted ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) { conv_pd_ = conv_pd; } ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, std::shared_ptr conv_bwd_data_pd, std::shared_ptr conv_bwd_weights_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), conv_pd_(conv_pd), conv_bwd_weights_pd_(conv_bwd_weights_pd), conv_bwd_data_pd_(conv_bwd_data_pd) { // If we are in Grad operatgor then update a key with BWD suffix to // distinguish from FWD memory primitives key_ += "-BWD"; } size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); } MKLDNNMemoryFormat GetDstFormat() const { return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc()); } size_t GetDiffWeightsMemorySize() const { return conv_bwd_weights_pd_->diff_weights_desc().get_size(); } size_t GetDiffSourceMemorySize() const { return conv_bwd_data_pd_->diff_src_desc().get_size(); } std::shared_ptr AcquireSrcMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_bwd_weights_pd_->src_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@weights-src_mem_p", pipeline); } std::shared_ptr AcquireDiffDstMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@weights-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireDiffWeightsMemoryFromWeightsPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive( conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p"); } std::shared_ptr AcquireDiffWeightsMemoryFromWeightsPrimitive( void) { return this->AcquireMemoryFromPrimitive( conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p"); } std::shared_ptr AcquireDiffDstMemoryFromDataPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@data-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemoryFromDataPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline) { // NOLINT auto weights_pd = conv_bwd_data_pd_->weights_desc(); auto user_pd = user_weights_memory_p->get_desc(); return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p, "@data-weights_mem_p", pipeline); } std::shared_ptr AcquireResidualDataMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p"); } std::shared_ptr AcquireDstMemoryFromResidualDataMemory( const std::shared_ptr& user_residual_memory_p, void* dst_ptr, std::vector& pipeline) { // NOLINT return this->AcquireMemory(user_residual_memory_p, this->AcquireDstMemoryFromPrimitive(dst_ptr), "@residual_data_mem_p", pipeline); } std::shared_ptr AcquireDiffSrcMemoryFromDataPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(), ptr, "@diff_src_mem_p"); } std::shared_ptr AcquireDstMemoryFromPrimitive(void* ptr) { return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr, "@dst_mem_p"); } std::shared_ptr AcquireSrcMemoryFromPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_pd_->src_desc(); auto user_pd = user_memory_p->get_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemory( const mkldnn::memory::desc& md, void* ptr, user_function custom_func = {}) { return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func); } std::shared_ptr AcquireBiasMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_bias_mem_p"); } std::shared_ptr AcquireWeightsMemoryFromPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { auto user_weights_pd = user_weights_memory_p->get_desc(); auto weights_pd = conv_pd_->weights_desc(); return this->AcquireMemory( weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } std::shared_ptr AcquireBiasMemoryFromPrimitive( const std::shared_ptr user_bias_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // NOLINT auto user_bias_pd = user_bias_memory_p->get_desc(); auto bias_pd = conv_pd_->bias_desc(); return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p, "@bias_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } mkldnn::primitive_attr CreatePostOps( std::string fuse_activation, float fuse_alpha, float fuse_beta, bool fuse_residual_conn, const std::vector output_shift_scale = {}, float sum_scale = 1.0f) const { mkldnn::primitive_attr conv_attr; mkldnn::post_ops post_operations; if (output_shift_scale.size() > 0) { int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0; conv_attr.set_output_scales(mask, output_shift_scale); } // Fusion with Elementwise layer relies on adding a sum post-operation with // the scale parameter. It is assumed that when fuse_residual_connection is // true, the output tensor contains the data coming from residual // connection. The result of this post_op is: // Output = scale * Output + Conv_Out. if (fuse_residual_conn) { post_operations.append_sum(sum_scale); } // Fusion with ReLU layer is executed through the PostOps feature. Create a // PostOps object and configure it to execute an eltwise relu operation. if (fuse_activation == "relu" || fuse_activation == "leaky_relu") { constexpr float scale = 1.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu, fuse_alpha, fuse_beta); } else if (fuse_activation == "relu6") { constexpr float scale = 1.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_bounded_relu, fuse_alpha, fuse_beta); } else if (fuse_activation == "swish") { constexpr float scale = 1.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish, fuse_alpha, fuse_beta); } conv_attr.set_post_ops(post_operations); return conv_attr; } std::shared_ptr AcquireConvolutionPrimitiveDescriptor( const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights, boost::optional bias, const mkldnn::memory::desc& dst, const std::vector& strides, const std::vector& dilations, const std::vector& paddings, const mkldnn::engine& engine, const std::string& fuse_activation, float fuse_alpha, float fuse_beta, const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind, const std::vector output_shift_scale = {}, const float sum_scale = 1.0f) { // Conv PD has to be passed to Grad op that // may be exxecuted by diffrent thread, hence // for that one we use key that does not contain TID const std::string key_conv_pd = key_common_ + "@conv_pd"; conv_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_conv_pd)); if (conv_pd_ == nullptr) { static std::mutex acquire_barrier; std::lock_guard block_threads_until_finish_this_job( acquire_barrier); conv_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_conv_pd)); if (conv_pd_ == nullptr) { mkldnn::memory::dims stride_dims = strides; mkldnn::memory::dims dilations_dims = dilations; auto mkldnn_paddings = ToMkldnnPadding(paddings); auto conv_desc = bias ? typename forward_t::desc( fwd_prop_kind, convolutional_algorithm::T, src, weights, *bias, dst, stride_dims, dilations_dims, mkldnn_paddings[0], mkldnn_paddings[1]) : typename forward_t::desc( fwd_prop_kind, convolutional_algorithm::T, src, weights, dst, stride_dims, dilations_dims, mkldnn_paddings[0], mkldnn_paddings[1]); mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn, output_shift_scale, sum_scale); conv_pd_.reset(new typename forward_t::primitive_desc( conv_desc, conv_attr, engine)); // Save conv_pd/src_memory/weights_memory for backward pass dev_ctx_.SetBlob(key_conv_pd, conv_pd_); } } return conv_pd_; } std::shared_ptr AcquireConvolution() { auto prim_key = key_ + "@conv_p"; auto conv_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (conv_p == nullptr) { conv_p = std::make_shared(*conv_pd_); dev_ctx_.SetBlob(prim_key, conv_p); } return conv_p; } std::shared_ptr AcquireConvolutionBackwardWeights() { auto prim_key = key_ + "@conv_bwd_weights_p"; auto conv_bwd_weights_p = std::static_pointer_cast( dev_ctx_.GetBlob(prim_key)); if (conv_bwd_weights_p == nullptr) { // create backward conv primitive for weights conv_bwd_weights_p = std::make_shared(*conv_bwd_weights_pd_); dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p); } return conv_bwd_weights_p; } std::shared_ptr AcquireConvolutionBackwardData() { auto prim_key = key_ + "@conv_bwd_data_p"; auto conv_bwd_data_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (conv_bwd_data_p == nullptr) { conv_bwd_data_p = std::make_shared(*conv_bwd_data_pd_); dev_ctx_.SetBlob(prim_key, conv_bwd_data_p); } return conv_bwd_data_p; } private: std::shared_ptr conv_pd_; std::shared_ptr conv_bwd_weights_pd_; std::shared_ptr conv_bwd_data_pd_; }; using ConvMKLDNNHandler = ConvMKLDNNTemplateHandler; using ConvTransposeMKLDNNHandler = ConvMKLDNNTemplateHandler; template static std::shared_ptr SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler) { T* output_data = output->mutable_data(ctx.GetPlace(), handler->GetDstMemorySize()); std::shared_ptr dst_memory_p = handler->AcquireDstMemoryFromPrimitive(to_void_cast(output_data)); return dst_memory_p; } template static std::shared_ptr SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, const framework::Tensor* residual_param, const mkldnn::memory::desc& user_residual_md, const std::shared_ptr& handler, std::vector* pipeline) { const T* residual_param_data = residual_param->data(); PADDLE_ENFORCE_NOT_NULL( residual_param_data, platform::errors::PreconditionNotMet("Residual parameter is required for " "the DNNL conv+elementwise_add " "fusion, but now it is missing.")); std::shared_ptr user_residual_memory_p = handler->AcquireResidualDataMemory(user_residual_md, to_void_cast(residual_param_data)); T* output_data = output->mutable_data(ctx.GetPlace()); std::shared_ptr dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory( user_residual_memory_p, to_void_cast(output_data), *pipeline); return dst_memory_p; } template static void SetDstMemoryHandler( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler, std::shared_ptr dst_memory_p) { T* output_data = output->mutable_data(ctx.GetPlace(), handler->GetDstMemorySize()); dst_memory_p->set_data_handle(to_void_cast(output_data)); } template static void SetDstMemoryQuantized( const framework::ExecutionContext& ctx, framework::Tensor* output, std::vector dst_tz, const mkldnn::engine& engine, std::shared_ptr& dst_md, // NOLINT std::shared_ptr& dst_memory, // NOLINT MKLDNNMemoryFormat output_format) { T* output_data = output->mutable_data(ctx.GetPlace()); const size_t dst_dims = dst_tz.size(); MKLDNNMemoryFormat dst_fmt; PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument( "Dst memory for quantization can not have " "dims > 5. But received dst_dims is %d.", dst_dims)); dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format); auto tmp_dst_md = platform::MKLDNNMemDesc( {dst_tz}, paddle::framework::ToMKLDNNDataType( framework::DataTypeTrait::DataType()), dst_fmt); dst_md.reset(new mkldnn::memory::desc(tmp_dst_md)); dst_memory.reset( new mkldnn::memory(*dst_md, engine, to_void_cast(output_data))); } } // namespace platform } // namespace paddle