softmax_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29 30
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

31 32 33
namespace paddle {
namespace operators {

D
dongzhihong 已提交
34
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

38 39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
M
mozga-intel 已提交
42 43
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
44
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
45
    if (input_data_type == framework::proto::VarType::FP16) {
46 47 48 49
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_xpu_place(ctx.GetPlace()) ||
50 51
              platform::is_mlu_place(ctx.GetPlace()) ||
              platform::is_custom_place(ctx.GetPlace()),
52 53
          true,
          platform::errors::InvalidArgument(
54
              "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
K
Kexin Zhao 已提交
55 56
    }

H
HongyuJia 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::CanCUDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     layout_,
                                     framework::LibraryType::kCUDNN);
    }
#endif
#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_);
75
  }
76
};
77

D
dongzhihong 已提交
78
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
79
 public:
Y
Yu Yang 已提交
80
  void Make() override {
81
    AddInput("X",
F
fengjiayi 已提交
82
             "The input tensor of softmax, "
D
dengkaipeng 已提交
83
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
84
    AddOutput("Out", "The normalized values with the same shape as X.");
85
    AddAttr<int>("axis",
D
dengkaipeng 已提交
86
                 "The dimension index of Input(x) to perform softmax,"
87 88
                 "default -1 for last dimension")
        .SetDefault(-1);
89 90 91 92 93 94 95
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
C
caoying03 已提交
96
    AddComment(R"DOC(
97 98
Softmax Operator.

99
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
100
has the same shape as the input.
C
caoying03 已提交
101

D
dengkaipeng 已提交
102
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
103
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
104
second dimension(row length) is as same as the dimension :attr:`axis` of the input
105 106 107
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
108
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
109
K-dimensional vector of real values in the range [0, 1] that add up to 1.
110 111 112 113 114
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
115

F
fengjiayi 已提交
116
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
117
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
118 119

)DOC");
120 121 122
  }
};

C
chengduo 已提交
123 124
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
125
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
126
      const override {
127 128
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
129 130 131
  }
};

D
dongzhihong 已提交
132
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
133 134 135
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

136 137 138 139
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
J
Jacek Czaja 已提交
140 141
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
142 143
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
J
Jacek Czaja 已提交
144
    if (input_data_type == framework::proto::VarType::FP16) {
145
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
146
            platform::is_npu_place(ctx.GetPlace()) ||
147
            platform::is_xpu_place(ctx.GetPlace()) ||
148 149
            platform::is_mlu_place(ctx.GetPlace()) ||
            platform::is_custom_place(ctx.GetPlace())))
150
        PADDLE_THROW(platform::errors::InvalidArgument(
151
            "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
J
Jacek Czaja 已提交
152
    }
H
HongyuJia 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::CanCUDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     layout_,
                                     framework::LibraryType::kCUDNN);
    }
#endif
#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
J
Jacek Czaja 已提交
169

H
HongyuJia 已提交
170
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_);
171
  }
D
dongzhihong 已提交
172 173
};

H
hong 已提交
174 175
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
176
 public:
H
hong 已提交
177
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
178 179

 protected:
180
  void Apply(GradOpPtr<T> op) const override {
181 182
    op->SetType("softmax_grad");

H
hong 已提交
183 184
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
185

H
hong 已提交
186
    op->SetAttrMap(this->Attrs());
187

H
hong 已提交
188
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
189 190
  }
};
D
dzhwinter 已提交
191

192 193
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

194 195 196
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
197
namespace ops = paddle::operators;
D
dongzhihong 已提交
198

199 200
DECLARE_INFER_SHAPE_FUNCTOR(softmax,
                            SoftmaxInferShapeFunctor,
201
                            PD_INFER_META(phi::SoftmaxInferMeta));
202 203 204
REGISTER_OPERATOR(softmax,
                  ops::SoftmaxOp,
                  ops::SoftmaxOpMaker,
H
hong 已提交
205 206 207
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
208 209 210 211
                  ops::SoftmaxInplaceInferer,
                  SoftmaxInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad,
                            SoftmaxGradInferShapeFunctor,
212
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
213 214
REGISTER_OPERATOR(softmax_grad,
                  ops::SoftmaxOpGrad,
C
Chen Weihang 已提交
215
                  SoftmaxGradInferShapeFunctor);