framework.py 76.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28
try:
P
peizhilin 已提交
29
    if os.name == 'nt':
P
peizhilin 已提交
30
        import sys
P
peizhilin 已提交
31 32 33 34 35
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

36
    from . import core
37
except ImportError as e:
P
peizhilin 已提交
38 39 40 41 42 43 44 45 46 47 48 49
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
50
except Exception as e:
51
    raise e
52
from . import unique_name
Y
Yu Yang 已提交
53

54
__all__ = [
55 56 57 58
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
59
    'name_scope',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

68
_imperative_tracer_ = None
M
minqiyang 已提交
69
_current_expected_place_ = None
70 71 72 73 74 75 76 77 78


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
79

M
minqiyang 已提交
80 81 82 83
def _current_expected_place():
    return _current_expected_place_


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
123

124 125 126 127
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
128 129
          with name_scope("attention"):
             ...
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
149 150 151
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
152 153 154 155


def grad_var_name(var_name):
    """
156 157
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
158 159 160
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
161

162
def convert_np_dtype_to_dtype_(np_dtype):
163 164
    """
    Convert the data type in numpy to the data type in Paddle
165

166
    Args:
167
        np_dtype(np.dtype): the data type in numpy.
168

169 170
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
171 172

    """
173 174
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
175
        return core.VarDesc.VarType.FP32
176
    elif dtype == np.float64:
177
        return core.VarDesc.VarType.FP64
178
    elif dtype == np.float16:
179
        return core.VarDesc.VarType.FP16
180
    elif dtype == np.int32:
181
        return core.VarDesc.VarType.INT32
182
    elif dtype == np.int16:
183
        return core.VarDesc.VarType.INT16
184
    elif dtype == np.int64:
185
        return core.VarDesc.VarType.INT64
186
    elif dtype == np.bool:
187
        return core.VarDesc.VarType.BOOL
188 189
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
190 191
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
192 193
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
194
    else:
M
minqiyang 已提交
195
        raise ValueError("Not supported numpy dtype %s" % dtype)
196 197 198


def dtype_is_floating(dtype):
199 200 201
    """
    Check the data type is floating or not.
    Args:
202
        dtype(np.dtype|core.VarDesc.VarType): data type.
203 204 205 206 207
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
208
    if not isinstance(dtype, core.VarDesc.VarType):
209 210
        dtype = convert_np_dtype_to_dtype_(dtype)

211 212 213 214
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
215 216


Y
Yang Yang(Tony) 已提交
217
def _debug_string_(proto, throw_on_error=True):
218 219 220 221 222 223 224 225 226 227 228
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
229
    error_fields = list()
Y
Yang Yang(Tony) 已提交
230
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
231 232
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
233 234 235
    return proto.__str__()


X
Xin Pan 已提交
236
class Variable(object):
237
    """
238 239 240
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
241
    two variables in different blocks could have the same name.
242

243 244
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
245

246
    Most of a Variable's member variables can be setted to be None. It mean
247
    it is not available or will be specified later.
248 249

    Args:
250
        block(Block): The block that the variable belongs to.
251 252
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
253 254
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
255
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
256
            Some kinds of variable do not contain shape, just set it to None.
257 258 259
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
260
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
261
            series data.
262
            Default: None
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
285 286
    """

Y
Yu Yang 已提交
287 288
    def __init__(self,
                 block,
Y
Yu Yang 已提交
289
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
290 291 292 293
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
294
                 capacity=None,
Q
QI JUN 已提交
295
                 persistable=None,
F
fengjiayi 已提交
296
                 error_clip=None,
Y
Yu Yang 已提交
297
                 stop_gradient=False,
F
fengjiayi 已提交
298
                 is_data=False,
Y
Yu Yang 已提交
299
                 **kwargs):
Y
Yu Yang 已提交
300
        self.block = block
F
fengjiayi 已提交
301
        self.error_clip = error_clip
Y
Yu Yang 已提交
302 303

        if name is None:
Y
Yu Yang 已提交
304
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
305
        is_new_var = False
M
minqiyang 已提交
306
        name = cpt.to_text(name)
M
minqiyang 已提交
307
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
308 309

        if self.desc is None:
M
minqiyang 已提交
310
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
311
            is_new_var = True
Y
Yu Yang 已提交
312

Y
Yu Yang 已提交
313 314 315 316 317 318 319 320
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
321
        if shape is not None:
Y
Yu Yang 已提交
322
            if is_new_var:
323
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
324 325 326 327 328 329 330 331
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
332
        if dtype is not None:
333
            if not isinstance(dtype, core.VarDesc.VarType):
334
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
335
            if is_new_var:
F
fengjiayi 已提交
336
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
337
            else:
F
fengjiayi 已提交
338
                old_dtype = self.dtype
Q
QI JUN 已提交
339
                if dtype != old_dtype:
Y
Yu Yang 已提交
340 341 342 343 344
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
345 346

        if lod_level is not None:
Y
Yu Yang 已提交
347
            if is_new_var:
348
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
349 350 351 352 353 354 355
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
356 357 358 359 360 361 362 363 364 365 366
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

367 368 369 370 371 372 373 374
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
375
        self.block.vars[name] = self
Y
Yu Yang 已提交
376
        self.op = None
M
minqiyang 已提交
377
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
378
        self.is_data = is_data
X
Xin Pan 已提交
379
        if _in_imperative_mode():
M
minqiyang 已提交
380 381 382
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
383
            self._ivar.desc = self.desc
384
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
385

386
    def _numpy(self):
387
        self._ivar.wait_device()
M
minqiyang 已提交
388
        tensor = self._ivar.value().get_tensor()
389 390 391
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
392
        self._ivar._run_backward()
393 394

    def _gradient(self):
M
minqiyang 已提交
395
        return np.array(self._ivar._grad_value())
396

397
    def __str__(self):
Y
Yang Yang(Tony) 已提交
398 399
        return self.to_string(True)

F
update  
fengjiayi 已提交
400
    def to_string(self, throw_on_error, with_details=False):
401 402 403 404
        """
        Get debug string.

        Args:
405 406
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
407
            with_details(bool): more details about variables and parameters
408 409
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
410

411 412
        Returns:
            str: The debug string.
413
        """
F
update  
fengjiayi 已提交
414 415
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
416
        protostr = self.desc.serialize_to_string()
417
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
418 419 420 421
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
422 423
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
424
        return res_str
425 426 427

    __repr__ = __str__

W
Wu Yi 已提交
428
    def _set_desc(self, input):
429 430 431 432 433 434 435 436 437
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
438 439
        self.desc = input

440 441 442 443 444 445 446 447
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

448 449 450 451
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
452 453 454 455
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
456 457
    @property
    def name(self):
M
minqiyang 已提交
458
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
459

T
typhoonzero 已提交
460 461 462 463
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
464 465 466
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
467
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
468 469

    @property
F
fengjiayi 已提交
470 471
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
472 473 474

    @property
    def lod_level(self):
475
        return self.desc.lod_level()
Y
Yu Yang 已提交
476

Y
Yu Yang 已提交
477 478 479 480
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
481
    def _set_error_clip(self, error_clip):
482 483 484 485 486 487 488 489 490
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
491 492
        self.error_clip = error_clip

Y
Yu Yang 已提交
493

F
fengjiayi 已提交
494 495 496
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
497

498 499
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
500 501 502 503
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
504
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
505 506 507 508 509
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
510 511 512 513
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
514 515 516 517 518 519 520 521 522
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
523
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
524 525 526 527 528 529
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
530 531 532 533 534 535 536 537
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
538 539
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
540 541
        return self.op_proto_map[type]

542 543 544 545
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
546
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
547
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
548 549
        }

F
fengjiayi 已提交
550

X
Xin Pan 已提交
551
class Operator(object):
552
    """
553 554 555 556 557 558 559
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
560
        type(str): The type of operator. Default None.
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
581
        Block.append_op or Block._prepend_op instead.
582 583 584 585 586 587 588 589 590 591

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
592
    """
593 594 595
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
596 597
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
598
    }
599

Y
Yu Yang 已提交
600 601
    def __init__(self,
                 block,
Y
Yu Yang 已提交
602
                 desc,
Y
Yu Yang 已提交
603 604 605
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
606
                 attrs=None):
Y
Yu Yang 已提交
607
        self.block = block
Y
Yu Yang 已提交
608
        self.desc = desc
G
gongweibao 已提交
609 610 611 612 613
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
614 615 616 617
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
618 619
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
620 621 622

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
623 624
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
625

G
gongweibao 已提交
626 627
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
628

F
fengjiayi 已提交
629 630 631 632 633
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
634
        self.desc.set_type(type)
F
fengjiayi 已提交
635
        proto = OpProtoHolder.instance().get_op_proto(type)
636

637 638 639
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
640 641
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
642
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
643 644
                    return True
            return False
Q
QI JUN 已提交
645

Y
Yang Yang(Tony) 已提交
646 647 648 649 650 651 652
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
653 654 655 656
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
657 658
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
659 660 661
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
662
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
663
                            in_arg_names.append(arg)
664 665
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
666
                        else:
M
minqiyang 已提交
667
                            in_arg_names.append(cpt.to_text(arg.name))
668
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
669 670
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
671

Y
Yu Yang 已提交
672
        if outputs is not None:
673
            for m in proto.outputs:
Q
qingqing01 已提交
674 675 676 677 678 679
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
680
            for out_proto in proto.outputs:
Q
qingqing01 已提交
681 682
                if out_proto.name not in outputs:
                    continue
683 684 685 686
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
687 688
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
689 690 691
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
692
                    out_arg_names.append(cpt.to_text(arg.name))
693 694
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
695

G
gongweibao 已提交
696 697
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
698
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
699
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
700
                attr_name = attr.name
G
gongweibao 已提交
701
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
702
                    continue
G
gongweibao 已提交
703
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
704 705
                self._update_desc_attr(attr_name, attr_val)

706
        self.desc.check_attrs()
M
minqiyang 已提交
707

W
Wu Yi 已提交
708
        if self._has_kernel(type):
Q
QI JUN 已提交
709
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
710
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
711

X
Xin Pan 已提交
712 713 714
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
715
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
716
            if inputs is not None:
X
Xin Pan 已提交
717 718 719 720 721 722
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
723
            if outputs is not None:
X
Xin Pan 已提交
724 725 726 727 728
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
729

W
Wu Yi 已提交
730
    def _has_kernel(self, op_type):
731 732
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
733
    def to_string(self, throw_on_error):
734
        """
735 736
        Get debug string.

737
        Args:
738 739
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
740

741 742
        Returns:
            str: The debug string.
743 744

        """
745
        protostr = self.desc.serialize_to_string()
746
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
747 748 749 750
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
751 752 753

    __repr__ = __str__

F
fengjiayi 已提交
754 755 756 757 758
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
759
        """
760
        Get the input arguments according to the input parameter name.
761

762 763
        Args:
            name(str): The input parameter name.
764

765 766 767
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
768
        """
F
fengjiayi 已提交
769 770
        return self.desc.input(name)

W
Wu Yi 已提交
771
    def _rename_input(self, old_name, new_name):
772 773 774 775 776 777 778 779 780 781
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
782
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
783

W
Wu Yi 已提交
784
    def _rename_output(self, old_name, new_name):
785 786 787 788 789 790 791 792 793 794
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
795
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
796

F
fengjiayi 已提交
797 798 799 800
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
801 802 803 804 805 806 807 808
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
809
    def output(self, name):
810
        """
811
        Get output arguments by the output parameter name.
812

813 814
        Args:
            name(str): The output parameter name.
815

816 817 818
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
819
        """
F
fengjiayi 已提交
820 821 822 823 824 825
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

826 827 828 829 830 831 832 833
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
834
    def has_attr(self, name):
835
        """
836 837
        Whether this Operator has the attribute with name or not.

838
        Args:
839
            name(str): the attribute name.
840

841 842
        Returns:
            bool: True if has this attribute.
843 844

        """
F
fengjiayi 已提交
845 846 847
        return self.desc.has_attr(name)

    def attr_type(self, name):
848
        """
849
        Get the type of attribute by attribute's name.
850

851 852
        Args:
            name(str): the attribute name.
853

854 855
        Returns:
            core.AttrType: the attribute type.
856
        """
F
fengjiayi 已提交
857 858
        return self.desc.attr_type(name)

W
Wu Yi 已提交
859
    def _set_attr(self, name, val):
860 861 862 863 864 865 866 867 868 869
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
883 884
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
885 886
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
887
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
888 889 890 891
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
892
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
893

F
fengjiayi 已提交
894 895 896 897 898
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
899
        """
900 901
        Get the attribute by name.

902
        Args:
903
            name(str): the attribute name.
904

905 906
        Returns:
            bool|int|str|float|list: The attribute value. The return value
907 908
            can be any valid attribute type.
        """
F
fengjiayi 已提交
909
        return self.desc.attr(name)
Y
Yu Yang 已提交
910

W
Wu Yi 已提交
911
    def _block_attr_id(self, name):
912
        """
G
gongweibao 已提交
913
        Get the block attribute's id by name.
914

915 916
        Args:
            name(str): the attribute name.
917

918 919
        Returns:
            int: the block index.
920
        """
W
Wu Yi 已提交
921
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
922

W
Wu Yi 已提交
923
    def _block_attr(self, name):
G
gongweibao 已提交
924 925 926 927 928 929 930 931 932 933
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
934
        id = self._block_attr_id(name)
G
gongweibao 已提交
935 936 937
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
938
    def _blocks_attr(self, name):
G
gongweibao 已提交
939 940 941 942 943 944 945 946 947 948
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
949
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
950 951 952 953 954
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
955
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
956 957 958 959 960 961 962 963 964 965
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
966
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
967

J
JiayiFeng 已提交
968
    def all_attrs(self):
F
fengjiayi 已提交
969
        """
970 971 972
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
973
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
974 975 976 977
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
978 979
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
980
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
981 982 983
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
984
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
985 986 987 988
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
989 990
        return attr_map

Y
Yu Yang 已提交
991

Y
Yu Yang 已提交
992
class Block(object):
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1007
        use `Program._create_block()` to create a block.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1022
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1023
        self.desc = program.desc.block(idx)
1024
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1025
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1026
        self.program = program
1027
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1028

1029
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1030 1031
        return self.to_string(True)

F
fengjiayi 已提交
1032 1033
    def to_string(self, throw_on_error, with_details=False):
        """
1034 1035
        Get debug string.

F
fengjiayi 已提交
1036 1037
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1038
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1039
            with_details(bool): more details about variables and parameters
1040 1041
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1042

1043 1044
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1045 1046 1047 1048
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1049
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1050 1051
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1052
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1053
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1054
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1055
            for op in self.ops:
F
fengjiayi 已提交
1056 1057
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1058 1059 1060
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1061 1062
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1063 1064
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1065 1066 1067

    __repr__ = __str__

Y
Yu Yang 已提交
1068 1069
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1070
        return self.desc.parent
Y
Yu Yang 已提交
1071

Y
Yu Yang 已提交
1072 1073 1074 1075
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1076
    def _set_forward_block_idx(self, idx):
1077 1078 1079 1080 1081 1082 1083 1084 1085
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1086
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1087

Y
Yu Yang 已提交
1088 1089
    @property
    def idx(self):
Y
Yu Yang 已提交
1090
        return self.desc.id
Y
Yu Yang 已提交
1091

Q
Qiao Longfei 已提交
1092
    def var(self, name):
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1106
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1107 1108 1109
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1110 1111
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1112
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1113
        return v
Q
Qiao Longfei 已提交
1114

X
Xin Pan 已提交
1115
    def _find_var_recursive(self, name):
1116 1117 1118 1119 1120 1121 1122
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1123
            Variable: the Variable with the giving name. Or None if not found.
1124
        """
Y
Yu Yang 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1149
        return None
Y
Yu Yang 已提交
1150

X
Xin Pan 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1170

Q
Qiao Longfei 已提交
1171
    def all_parameters(self):
1172
        return list(self.iter_parameters())
1173

1174
    def iter_parameters(self):
M
minqiyang 已提交
1175
        return (item[1] for item in six.iteritems(self.vars)
1176
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1177

Y
Yu Yang 已提交
1178
    def create_var(self, *args, **kwargs):
1179
        var = Variable(block=self, *args, **kwargs)
1180 1181
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1182
        return var
Y
Yu Yang 已提交
1183

Q
Qiao Longfei 已提交
1184 1185 1186
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1187
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1188 1189
        """
        Rename variable in vars and ops' inputs and outputs
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1202
        """
M
minqiyang 已提交
1203 1204
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1205

T
typhoonzero 已提交
1206
        if not self.has_var(name):
1207
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1208 1209
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1210
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1211 1212 1213 1214 1215 1216 1217
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1218
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1219 1220 1221 1222
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1223
        orig_var_type = v.type
M
minqiyang 已提交
1224
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1225
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1226
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1227
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1228 1229 1230 1231
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1232
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1233 1234 1235 1236 1237 1238 1239
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1240
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1241 1242
            var = Variable(
                self,
T
typhoonzero 已提交
1243
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1244 1245 1246 1247
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1248
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1249 1250 1251
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1252
        self._sync_with_cpp()
1253
        return var
T
typhoonzero 已提交
1254

W
Wu Yi 已提交
1255 1256
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1257
        self.desc._remove_var(cpt.to_bytes(name))
1258 1259
        del self.vars[name]

Y
Yu Yang 已提交
1260 1261
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1262
        param = Parameter(global_block, *args, **kwargs)
1263
        if 'initializer' in kwargs:
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1284
        return param
Y
Yu Yang 已提交
1285

Y
Yu Yang 已提交
1286
    def append_op(self, *args, **kwargs):
1287 1288 1289 1290 1291 1292
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1293
        op_desc = self.desc.append_op()
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1306
        if _in_imperative_mode():
1307
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1308
                                       _current_expected_place_, stop_gradient)
Y
Yu Yang 已提交
1309

W
Wu Yi 已提交
1310
    def _insert_op(self, index, *args, **kwargs):
1311 1312 1313 1314 1315 1316 1317 1318 1319
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1320 1321
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1322 1323 1324 1325
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1326
    def _remove_op(self, index):
1327 1328 1329 1330 1331 1332 1333 1334 1335
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1336 1337
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1338 1339
        del self.ops[index]

W
Wu Yi 已提交
1340
    def _slice_ops(self, start, end):
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1351
        return self.ops[start:end]
Y
Yancey1989 已提交
1352

W
Wu Yi 已提交
1353 1354
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1355 1356 1357 1358 1359 1360 1361
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1362
        self.ops.insert(0, op)
1363
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1364 1365
        return op

W
Wu Yi 已提交
1366
    def _sync_with_cpp(self):
1367
        """
1368 1369
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1370
        """
Q
Qiao Longfei 已提交
1371 1372 1373 1374 1375
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1376
        # sync variables removed from c++ end
1377
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1378
            if not self.desc.find_var(cpt.to_bytes(var)):
1379 1380
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1381
        # sync operators from cpp
1382 1383 1384 1385
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1402 1403 1404 1405 1406

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1407
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1408 1409 1410 1411 1412 1413 1414

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1428 1429 1430 1431
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1432
    def _copy_param_info_from(self, other):
1433
        """
1434 1435
        Copy the information of parameters from the other block.

1436
        Args:
1437 1438 1439 1440 1441
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1442 1443 1444 1445 1446

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1447 1448
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1449
        for p in other.iter_parameters():
1450 1451 1452
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1453
                raise ValueError("_copy_param_info_from should be invoked with "
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1466
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1467
                error_clip=p.error_clip,
1468 1469 1470
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1471
    def _clone_variable(self, var):
1472 1473
        """
        Clone a variable into current block.
1474

1475 1476 1477 1478
        Args:
            var: the variable to be cloned.

        Returns:
1479
            Variable: the new  variable cloned from 'var' in current block.
1480 1481
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1482 1483 1484 1485 1486
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1487 1488
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1489
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1490 1491 1492 1493 1494 1495
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1496 1497
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1498 1499 1500 1501 1502 1503 1504
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1505 1506
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1507
        return ret_var
1508

Y
Yu Yang 已提交
1509 1510

class Program(object):
D
dzhwinter 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1522
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1523 1524

    Returns:
Y
yuyang18 已提交
1525
        A empty program.
D
dzhwinter 已提交
1526 1527

    Examples:
Y
yuyang18 已提交
1528 1529 1530 1531 1532 1533
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1534 1535 1536

    """

1537 1538
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1539 1540
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1541
        self._seed = 0
Y
yuyang18 已提交
1542
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1543
        self._op_role_var = []
T
tangwei12 已提交
1544 1545 1546 1547

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1548
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1549
        self._endpoints = []
1550
        self._trainers_endpoints = []
T
tangwei12 已提交
1551
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1552 1553 1554

    @property
    def op_role(self):
Y
yuyang18 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1568 1569 1570 1571 1572 1573 1574 1575
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1576 1577 1578 1579 1580 1581 1582
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1583 1584 1585 1586
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1587
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1588 1589

    @contextlib.contextmanager
W
Wu Yi 已提交
1590
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1591 1592 1593 1594 1595 1596 1597
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1598
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1599 1600 1601 1602

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1603
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1604 1605
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1606 1607 1608
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1609 1610
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1611 1612 1613 1614
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1615
        yield
X
Xin Pan 已提交
1616 1617
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1618

1619
    @contextlib.contextmanager
X
Xin Pan 已提交
1620
    def _lr_schedule_guard(self, is_with_opt=False):
1621 1622 1623 1624 1625 1626 1627
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1628 1629 1630 1631
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1632 1633 1634 1635 1636 1637 1638

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1639 1640 1641 1642

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1643 1644
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1645 1646
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1647 1648 1649
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1650 1651
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1652

1653
    def __str__(self):
Y
yuyang18 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1663 1664
        return self.to_string(True)

F
fengjiayi 已提交
1665 1666 1667
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1668

F
fengjiayi 已提交
1669
        Args:
Y
yuyang18 已提交
1670 1671
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1672

Y
yuyang18 已提交
1673 1674 1675 1676
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1677 1678
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1679 1680 1681 1682

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1693 1694
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1695 1696
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1697

W
Wu Yi 已提交
1698
    def _get_desc(self):
Y
yuyang18 已提交
1699 1700 1701 1702 1703 1704 1705
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1706 1707
        return self.desc

X
version  
Xin Pan 已提交
1708 1709 1710
    def _version(self):
        return self.desc._version()

1711
    def clone(self, for_test=False):
Y
yuyang18 已提交
1712 1713 1714
        """
        Create a new, duplicated program.

1715

Y
yuyang18 已提交
1716 1717 1718 1719
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1720

Y
yuyang18 已提交
1721 1722 1723 1724
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1725 1726 1727 1728 1729
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1730 1731

        Args:
Y
yuyang18 已提交
1732 1733
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1734

D
dzhwinter 已提交
1735
        Returns:
Y
yuyang18 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1789 1790
        """
        if for_test:
X
Xin Pan 已提交
1791
            p = self._inference_optimize(prune_read_op=False)
1792
        else:
1793
            p = Program()
G
gongweibao 已提交
1794 1795
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1796
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1797 1798 1799
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1800 1801 1802 1803

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1804
            p._sync_with_cpp()
1805

W
Wu Yi 已提交
1806
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1807
        p._copy_data_info_from(self)
1808
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1809
        return p
1810

W
Wu Yi 已提交
1811
    def _prune(self, targets):
Y
yuyang18 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1827 1828 1829 1830 1831 1832
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1833 1834
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1835
                    # and we need to find the current op that generate this
1836 1837 1838 1839 1840 1841 1842 1843
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1844
                    t = t.op
1845 1846 1847 1848
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1849
                else:
1850 1851
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1852 1853 1854 1855

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1856 1857 1858
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1859
        res._sync_with_cpp()
1860 1861
        return res

X
Xin Pan 已提交
1862
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1863
        """
F
fengjiayi 已提交
1864 1865 1866 1867 1868
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1869
        3. change the :code:`is_test`
Y
yuyang18 已提交
1870 1871 1872
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1873
        Args:
X
Xin Pan 已提交
1874 1875
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1876

Y
yuyang18 已提交
1877 1878 1879 1880 1881 1882
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1883
        res = Program()
1884
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1885 1886 1887 1888

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1889
        if prune_read_op:
1890 1891 1892 1893 1894 1895 1896 1897 1898
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1899
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1900 1901

        # change all `is_test` attributes to True
M
minqiyang 已提交
1902
        for i in six.moves.range(res.desc.num_blocks()):
1903
            block = res.desc.block(i)
M
minqiyang 已提交
1904
            for j in six.moves.range(block.op_size()):
1905 1906
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1907
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1908 1909 1910
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1911
        res._sync_with_cpp()
1912 1913
        return res

1914 1915
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1916 1917 1918 1919 1920 1921 1922
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1923
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1924 1925 1926 1927

        Returns:
            Program: A deserialized program desc.
        """
1928 1929
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1930
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1931
        p._sync_with_cpp()
1932
        return p
Y
Yu Yang 已提交
1933

D
dzhwinter 已提交
1934 1935
    @property
    def random_seed(self):
Y
yuyang18 已提交
1936 1937 1938 1939 1940 1941
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1942 1943
        return self._seed

Q
qiaolongfei 已提交
1944 1945
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1946 1947 1948
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1949 1950
        return self.desc.num_blocks()

D
dzhwinter 已提交
1951 1952 1953 1954 1955 1956
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1957
    def __repr__(self):
1958
        return self.__str__()
1959

Y
Yu Yang 已提交
1960
    def global_block(self):
Y
yuyang18 已提交
1961 1962 1963
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1964 1965
        return self.blocks[0]

Q
Qiao Longfei 已提交
1966
    def block(self, index):
Y
yuyang18 已提交
1967 1968 1969 1970 1971 1972 1973 1974
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1975 1976
        return self.blocks[index]

Y
Yu Yang 已提交
1977
    def current_block(self):
Y
yuyang18 已提交
1978 1979 1980 1981
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1982 1983
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1984
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1995
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1996 1997 1998
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1999 2000 2001 2002
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2003
    def _rollback(self):
Y
yuyang18 已提交
2004 2005 2006 2007 2008
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2009 2010
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2011
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2022 2023 2024
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2025
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2026

W
Wu Yi 已提交
2027
    def _copy_param_info_from(self, other):
2028
        """
2029
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2030

Y
yuyang18 已提交
2031 2032 2033
        Notes: This is a very low level API. Users should not invoke it
        directly.

2034 2035 2036 2037 2038 2039 2040
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2041
            raise TypeError("_copy_param_info_from should be invoked with "
2042 2043 2044
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2045
            raise ValueError("_copy_param_info_from should be invoked with two "
2046
                             "program, with represent the same topology")
W
Wu Yi 已提交
2047
        self.global_block()._copy_param_info_from(other.global_block())
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2068
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2069 2070
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2071

Y
yuyang18 已提交
2072 2073 2074
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2075 2076 2077 2078 2079 2080 2081
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2082
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2083 2084 2085
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2086
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2087
                             "program, with represent the same topology")
2088
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2089 2090 2091
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2092
    def list_vars(self):
Y
yuyang18 已提交
2093 2094 2095 2096 2097 2098
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2099
        for each_block in self.blocks:
2100
            for each_var in list(each_block.vars.values()):
2101 2102
                yield each_var

Y
Yu Yang 已提交
2103

Y
Yu Yang 已提交
2104
class Parameter(Variable):
2105
    """
2106
    Parameter is derived from Variable. A parameter is a persistable
2107
    Variable, and will be updated by optimizers after each iteration.
2108
    The training of a neural network is essentially the updating of
2109 2110
    its parameters.

2111
    Relative to a general Variable, a Parameter has several its own
2112 2113
    member variables:

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2126 2127
    """

Y
Yu Yang 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2138 2139 2140

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2141 2142 2143 2144
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2145 2146
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2147
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2148

W
wanghaoshuang 已提交
2149
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2150

F
fengjiayi 已提交
2151 2152 2153
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2154 2155 2156
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2157

F
update  
fengjiayi 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2172
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2173
            for attr_name in additional_attr:
2174 2175
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2176 2177
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2178 2179 2180 2181
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2182

Y
Yu Yang 已提交
2183
# program is a global instance.
Y
Yu Yang 已提交
2184 2185
_main_program_ = Program()
_startup_program_ = Program()
2186

2187

2188
def default_startup_program():
Y
Yu Yang 已提交
2189
    """
Y
yuyang18 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2199

Y
Yu Yang 已提交
2200 2201 2202
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2203
    return _startup_program_
2204

2205

2206
def default_main_program():
Y
Yu Yang 已提交
2207
    """
Y
yuyang18 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2217

Y
Yu Yang 已提交
2218 2219 2220
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2221
    return _main_program_
Y
Yu Yang 已提交
2222 2223 2224 2225 2226


def switch_main_program(program):
    """
    Switch the main program to a new program.
2227

Y
Yu Yang 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2242
    Switch the startup program to a new program
Y
Yu Yang 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2258 2259 2260
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2261

Y
Yu Yang 已提交
2262
    Examples:
Y
yuyang18 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2273

Y
Yu Yang 已提交
2274
    Examples:
Y
yuyang18 已提交
2275 2276 2277 2278 2279 2280

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2281

Y
Yu Yang 已提交
2282
    Args:
Y
yuyang18 已提交
2283
        main_program(Program): New main program inside `with` statement.
2284
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2298 2299


W
Wu Yi 已提交
2300
def _get_var(name, program=None):
X
xuwei06 已提交
2301
    """
Y
yuyang18 已提交
2302
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2303

X
xuwei06 已提交
2304 2305 2306
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2307
        If None, default_global_program() will be used.
X
xuwei06 已提交
2308 2309 2310 2311 2312 2313 2314

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2315
    assert isinstance(program, Program)
X
xuwei06 已提交
2316 2317

    return program.global_block().var(name)
2318 2319 2320


@contextlib.contextmanager
M
minqiyang 已提交
2321
def _imperative_guard(tracer, place):
2322 2323 2324
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2325 2326 2327 2328 2329

    global _current_expected_place_
    tmp_place = _current_expected_place_
    _current_expected_place_ = place

2330
    yield
M
minqiyang 已提交
2331

2332
    _imperative_tracer_ = tmp_trace
M
minqiyang 已提交
2333
    _current_expected_place_ = tmp_place