softmax_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29 30
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

31 32 33
namespace paddle {
namespace operators {

D
dongzhihong 已提交
34
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

38 39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
M
mozga-intel 已提交
42 43
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
44
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
45
    if (input_data_type == framework::proto::VarType::FP16) {
46 47 48 49
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_xpu_place(ctx.GetPlace()) ||
50 51
              platform::is_mlu_place(ctx.GetPlace()) ||
              platform::is_custom_place(ctx.GetPlace()),
52 53
          true,
          platform::errors::InvalidArgument(
54
              "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
K
Kexin Zhao 已提交
55
    }
H
HongyuJia 已提交
56 57 58 59 60 61 62 63 64
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::CanCUDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     layout_,
                                     framework::LibraryType::kCUDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_);
65
  }
66
};
67

D
dongzhihong 已提交
68
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
69
 public:
Y
Yu Yang 已提交
70
  void Make() override {
71
    AddInput("X",
F
fengjiayi 已提交
72
             "The input tensor of softmax, "
D
dengkaipeng 已提交
73
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
74
    AddOutput("Out", "The normalized values with the same shape as X.");
75
    AddAttr<int>("axis",
D
dengkaipeng 已提交
76
                 "The dimension index of Input(x) to perform softmax,"
77 78
                 "default -1 for last dimension")
        .SetDefault(-1);
79 80 81 82 83 84 85
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
C
caoying03 已提交
86
    AddComment(R"DOC(
87 88
Softmax Operator.

89
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
90
has the same shape as the input.
C
caoying03 已提交
91

D
dengkaipeng 已提交
92
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
93
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
94
second dimension(row length) is as same as the dimension :attr:`axis` of the input
95 96 97
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
98
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
99
K-dimensional vector of real values in the range [0, 1] that add up to 1.
100 101 102 103 104
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
105

F
fengjiayi 已提交
106
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
107
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
108 109

)DOC");
110 111 112
  }
};

C
chengduo 已提交
113 114
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
115
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
116
      const override {
117 118
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
119 120 121
  }
};

D
dongzhihong 已提交
122
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
123 124 125
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

126 127 128 129
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
J
Jacek Czaja 已提交
130 131
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
132 133
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
J
Jacek Czaja 已提交
134
    if (input_data_type == framework::proto::VarType::FP16) {
135
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
136
            platform::is_npu_place(ctx.GetPlace()) ||
137
            platform::is_xpu_place(ctx.GetPlace()) ||
138 139
            platform::is_mlu_place(ctx.GetPlace()) ||
            platform::is_custom_place(ctx.GetPlace())))
140
        PADDLE_THROW(platform::errors::InvalidArgument(
141
            "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
J
Jacek Czaja 已提交
142
    }
H
HongyuJia 已提交
143 144 145 146 147 148 149 150 151
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::CanCUDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     layout_,
                                     framework::LibraryType::kCUDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_);
152
  }
D
dongzhihong 已提交
153 154
};

H
hong 已提交
155 156
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
157
 public:
H
hong 已提交
158
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
159 160

 protected:
161
  void Apply(GradOpPtr<T> op) const override {
162 163
    op->SetType("softmax_grad");

H
hong 已提交
164 165
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
166

H
hong 已提交
167
    op->SetAttrMap(this->Attrs());
168

H
hong 已提交
169
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
170 171
  }
};
D
dzhwinter 已提交
172

173 174
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

175 176 177
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
178
namespace ops = paddle::operators;
D
dongzhihong 已提交
179

180 181
DECLARE_INFER_SHAPE_FUNCTOR(softmax,
                            SoftmaxInferShapeFunctor,
182
                            PD_INFER_META(phi::SoftmaxInferMeta));
183 184 185
REGISTER_OPERATOR(softmax,
                  ops::SoftmaxOp,
                  ops::SoftmaxOpMaker,
H
hong 已提交
186 187 188
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
189 190 191 192
                  ops::SoftmaxInplaceInferer,
                  SoftmaxInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad,
                            SoftmaxGradInferShapeFunctor,
193
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
194 195
REGISTER_OPERATOR(softmax_grad,
                  ops::SoftmaxOpGrad,
C
Chen Weihang 已提交
196
                  SoftmaxGradInferShapeFunctor);